• 제목/요약/키워드: Direct Energy Conversion

검색결과 176건 처리시간 0.028초

Optimal Design of a Direct-Drive Permanent Magnet Synchronous Generator for Small-Scale Wind Energy Conversion Systems

  • Abbasian, Mohammadali;Isfahani, Arash Hassanpour
    • Journal of Magnetics
    • /
    • 제16권4호
    • /
    • pp.379-385
    • /
    • 2011
  • This paper presents an optimal design of a direct-drive permanent magnet synchronous generator for a small-scale wind energy conversion system. An analytical model of a small-scale grid-connected wind energy conversion system is presented, and the effects of generator design parameters on the payback period of the system are investigated. An optimization procedure based on genetic algorithm method is then employed to optimize four design parameters of the generator for use in a region with relatively low wind-speed. The aim of optimization is minimizing the payback period of the initial investment on wind energy conversion systems for residential applications. This makes the use of these systems more economical and appealing. Finite element method is employed to evaluate the performance of the optimized generator. The results obtained from finite element analysis are close to those achieved by analytical model.

DSC를 활용한 상용전력변환 시스템에 관한 연구 (A study on the power conversion system using Dye-Sensitized Solar cell)

  • 김진영;박성준;박해명;김우성;김휘영;김희제
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2006년도 춘계학술대회
    • /
    • pp.195-198
    • /
    • 2006
  • The technology of Solar Power conversion System is defined as a solar cell that changes the sol ar energy into the direct electric energy, power conversion and control technology that convert the dc power into ac power The solar cell module, power conversion, and a control part in component parts consisting a solar power conversion system have influence on its performance. The roles of power conversion and a control part supply the direct current generated by solar cell module for a load with high efficiency as conveniently as possible in this study, the power conversion systen that can generate solar power using DSC module was developed and its characteristics was experimented. The characteristics of the DSC power conversion system including MOSFET and DSP micro processor, high speed devices, was simulated using Psim. According to the results, converter and inverter was manufactured in detail and the performance characteristics were studied.

  • PDF

Primary Energy Conversion in a Direct Drive Turbine for Wave Power Generation

  • Prasad, Deepak Divashkar;Zullah, Mohammed Asid;Kim, You-Taek;Lee, Young-Ho
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2010년도 춘계학술대회 초록집
    • /
    • pp.237.1-237.1
    • /
    • 2010
  • Recent developments such as concern over global warming, depletion of fossil fuels and increase in energy demands by the increasing world population has eventually lead to mass production of electricity using renewable sources. Ocean contains energy in form of thermal energy and mechanical energy: thermal energy from solar radiation and mechanical energy from the waves and tides. The current paper looks at generating power using waves. The primary objective of the present study is to maximize the primary energy conversion (first stage conversion) of the base model by making some design changes. The model entire consisted of a numerical wave tank and the turbine section. The turbine section had three components; front guide nozzle, augmentation channel and the rear chamber. The augmentation channel further consisted of a front nozzle, rear nozzle and an internal fluid region representing the turbine housing. Different front guide nozzle configuration and rear chamber design were studied. As mentioned, a numerical wave tank was utilized to generate waves of desired properties and later the turbine section was integrated. The waves in the numerical wave tank were generated by a piston type wave maker which was located at the wave tank inlet. The inlet which was modeled as a plate wall which moved sinusoidally with the general function, $x=asin{\omega}t$. In addition to primary energy conversion, observation of flow characteristics, pressure and the velocity in the augmentation channel, rear chamber as well as the front guide nozzle are presented in the paper. The analysis was performed using the commercial code of the ANSYS-CFX. The base model recorded water power of 29.9 W. After making the changes, the best model obtained water power of 37.1 W which represents an increase of approximately 24% in water power and primary energy conversion.

  • PDF

Comparative study of control strategies for the induction generators in wind energy conversion system

  • Giribabu, D.;Das, Maloy;Kumar, Amit
    • Wind and Structures
    • /
    • 제22권6호
    • /
    • pp.635-662
    • /
    • 2016
  • This paper deals with the comparison of different control strategies for the Induction generators in wind energy conversion system. Mainly, two types of induction machines, Self excited induction generator (SEIG) and doubly Fed Induction generators (DFIG) are studied. The different control strategies for SEIG and DFIG are compared. For SEIG, Electronic load Controller mechanism, Static Compensator based voltage regulator are studied. For DFIG the main control strategy namely vector control, direct torque control and direct power control are implemented. Apart from these control strategies for both SEIG and DFIG to improve the performance, the ANFIS based controller is introduced in both STATCOM and DTC methods. These control methods are simulated using MATLAB/SIMULINK and performances are analyzed and compared.

High-Performance Elevator Traction Using Direct Torque Controlled Induction Motor Drive

  • Arafa, Osama Mohamed;Abdallah, Mohamed Elsayed;Aziz, Ghada Ahmed Abdel
    • Journal of Electrical Engineering and Technology
    • /
    • 제13권3호
    • /
    • pp.1156-1165
    • /
    • 2018
  • This paper presents a detailed realization of direct torque controlled induction motor drive for elevator applications. The drive is controlled according to the well-known space vector modulated direct control scheme (SVM-DTC). As the elevator drives are usually equipped with speed sensors, flux estimation is carried out using a current model where two stator currents are measured and accurate instantaneous rotor speed measurement is used to overcome the need for measuring stator voltages. Speed profiling for a comfortable elevator ride and other supervisory control activities to provide smooth operation are also explained. The drive performance is examined and controllers' parameters are fine-tuned using MATLAB/SIMULINK. The blocks used for flux and torque estimation and control in the offline simulation are compiled for real-time using dSPACE Microlabox. The performance of the drive has been verified experimentally. The results show good performance under transient and steady state conditions.

열전발전용 Peltier module의 특성 측정 (Characteristics of peltier module for thermoelectric generator)

  • 우병철;이희웅;이동윤;김봉서;슈마토크
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1998년도 하계학술대회 논문집 D
    • /
    • pp.1552-1554
    • /
    • 1998
  • TEC(Thermoelectric conversion) is direct conversion method between thermal energy and electric energy. We studied on the mechanical, electrical and thermal properties of thermoelectric module, made experimental thermoelectric generator with BiTe material and manufactured module tester for electric-thermal energy conversion.

  • PDF

Performance Analysis of a savonius type direct drive turbine for wave energy conversion

  • Zullah, Mohammed Asid;Prasad, Deepak Divashkar;Choi, Young-Do;Lee, Young-Ho
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2010년도 춘계학술대회 초록집
    • /
    • pp.237.2-237.2
    • /
    • 2010
  • Although oscillating water column type wave energy devices are nearing the stage of commercial exploitation, there is still much to be learnt about many facets of their hydrodynamic performance. The techniques of Computational Fluid Dynamics (CFD) are applied to simulate a wave energy conversion device in free surface such as waves. This research uses the commercially available ANSYS CFX computational fluid dynamics flow solver to model a complete oscillating water column system with savonius turbine incorporated at the rear bottom of the OWC chamber in a three dimensional numerical wave tank. The purpose of the present study is to investigate the effect of an average wave condition on the performance and internal flow of a newly developed direct drive turbine (DDT) model for wave energy conversion numerically. The effects of blade angle and front lip shape on the hydrodynamic efficiency are investigated. The results indicated that the developed models are suitable to analyze the water flow characteristics both in the chamber and in the turbine. For the turbine, the numerical results of torque were compared for the all cases. The results of the testing have also illustrated that simple changes to the front wall aperture shape can provide marked improvements in the efficiency of energy capture for OWC type devices.

  • PDF

Torque-Angle-Based Direct Torque Control for Interior Permanent-Magnet Synchronous Motor Drivers in Electric Vehicles

  • Qiu, Xin;Huang, Wenxin;Bu, Feifei
    • Journal of Power Electronics
    • /
    • 제13권6호
    • /
    • pp.964-974
    • /
    • 2013
  • A modified direct torque control (DTC) method based on torque angle is proposed for interior permanent-magnet synchronous motor (IPMSM) drivers used in electric vehicles (EVs). Given the close relationship between torque and torque angle, proper voltage vectors are selected by the proposed DTC method to change the torque angle rapidly and regulate the torque quickly. The amplitude and angle of the voltage vectors are determined by the torque loop and stator flux-linkage loop, respectively, with the help of the position of the stator flux linkage. Furthermore, to satisfy the torque performance request of EVs, the nonlinear dead-time of the invertor caused by parasitic capacitances is considered and compensated to improve steady torque performance. The stable operation region of the IPMSM DTC driver for voltage and current limits is investigated for reliability. The experimental results prove that the proposed DTC has good torque performance with a brief control structure.