• Title/Summary/Keyword: Direct Drive Manipulator

Search Result 46, Processing Time 0.113 seconds

SAITEL : an easy robot language to use for SCARA type robots (사용에 편리한 ROBOT 언어 (SAITEL)의 개발)

  • 이영우;이관형
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1990.10a
    • /
    • pp.502-507
    • /
    • 1990
  • The robot operation by teach playback is easy and was widely used for simple jobs performed by a simple robot manipulator. However, as robots and their control systems and tasks become more and more sophisticated, such a simple robot operation is no longer adequate and programming languages capable for the complicated systems and tasks are greatly needed. In this paper, a high-level robot-specific programming language, SAITEL, is presented. It is an interpreter, based on Assembly, and has form similar to BASIC. SAITEL is easy to use for people who are not skilled programmers, and provides the capability to define robot task very conveniently. SAITEL was implemented on a direct drive SCARA robot developed in the Samsung Advanced Institute of Technology, and proved to be very useful for the operation of SCARA-type robots. It can be used also for other types of robots by slight modification.

  • PDF

로봇 머니퓰레이터의 정상상태 위치오차를 제거할 수 있는 퍼지제어 알고리듬

  • 강철구;곽희성
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1995.04b
    • /
    • pp.235-240
    • /
    • 1995
  • In order to eliminate position errors existing at the steady state in the motion control of robotic manipulators, a new fuzzy control algorithm is proposed using three variables, position error, velocity error and integral of position errors as input variables of the fuzzy controller. Three dimensional look-up table is used toreduce the computational time in real-time control, and a technique reducing the amount of necessary memory is introduced. Simulation and experimental studies show that the position errors at the steady state are decreased more than 90% compared to those of existing fuzzy controller when the proposed fuzzy controller is applied to the 2 axis direct drive SCARA robot manipulator.

  • PDF

Rotation Speed and Torque Characteristics of Ultrasonic Motor by Phase difference (위상차에 의한 초음파 모터의 속도와 토오크 특성)

  • Kim, Dong-Ok;Ko, Nack-Yon;Choi, Han-Su;Cha, In-Su;Woo, Su-Yong;Kim, Young-Dong
    • Proceedings of the KIEE Conference
    • /
    • 1994.07a
    • /
    • pp.328-330
    • /
    • 1994
  • The Ultrasonic motor(USM) has many good characteristics such as high torque at low speed range, large holding torque based upon frictional force, high speed response, flexible free ferns, compactness in size, low magnetic noise and silentness in motion. Because of having low speed rotation, USM is good as an actuator of a small size direct drive (DD) manipulator. The acturators for the DD manipulators must have good controllability on the speed and torque from zero to maximum value continuously. New method was developed for speed and torque control by the phase difference control of the two-phase driving signals of the motor. Then rule adjustable compliant and dumped motion was realized on the output shaft of the motor by PD control of the output shaft angle.

  • PDF

Inverse Calibration of a Robot Manipulator Using Neural Network (뉴럴 네트워크를 이용한 로봇 매니퓰레이터의 역보정)

  • 정동연;김종수;한성현
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 1999.05a
    • /
    • pp.199-204
    • /
    • 1999
  • The robot inverse calibration method using a neural networks is proposed in this paper. A high-order networks has been used in this study. The Pi-Sigma networks uses linear summing units in the hidden layer and product unit in output layer. The inverse calibration model which compensates the difference of joint variables only between measuring value and analytic value about the desired pose(position orientation) of a robot is proposed. The compensated values are determined by using the weights obtained from the learning process of the neural networks previously. To prove the reasonableness, the selected compliance automatic robot arm type direct drive robot and anthropomorphic robot are simulated. It shows that the proposed calibration method can reduce the errors of the joint variables from ${\pm}$0.15$^{\circ}$to ${\pm}$0.12$^{\circ}$.

  • PDF

A Compliant Contact Control Strategy for Robot Manipulators with Unknown Environment

  • Kim, Byoung-Ho;Chong, Nak-Young;Oh, Sang-Rok;Suh, Il-Hong
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1998.10a
    • /
    • pp.20-25
    • /
    • 1998
  • This paper proposes a new compliant contact control strategy for the robot manipulators accidentally interacting with an unknown environment. The main features of the proposed method are summarized as follows: First, each entry in the diagonal stiffness matrix corresponding to the task coordinate in Cartesian space is adaptively adjusted during con-tact along the corresponding axis based on the contact force with its environment. Second, it can be used for both unconstrained and constrained motions without any switching mechanism which often causes undesirable instability and/or vibrational motion of the end effector. Third, the adjusted stiffness gains are automatically recovered to initially specified stiffness gains when the task is changed from constrained motion to unconstrained motion. The simulation results show the effectiveness of the proposed method by employing a two-link direct drive manipulator interacting with an unknown environment.

  • PDF

Stability of the Robot Compliant Motion Control, Part 2 : Implementation (로보트의 Compliance 제어에서의 안정성:구현)

  • Kim, Sung-Kwun
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.38 no.11
    • /
    • pp.950-957
    • /
    • 1989
  • We have shown how unstructured modeling was used to derive a general stability condition in Part 1. In Part 2, we focus on the particular dynamics (structured modiling) of the robot manipulator and environment. Using rigid body dynamics, the stability condition for the direct drive robots has been achieved in terms of the Jacobian and robot tracking controller. Combining the structured and unstructured modeling, a stability condition for a particular application can be obtained. This approach has been used to analyze compliant motion on the University of Minnesota robot using a feedforward torque controller. We have obtained a stability condition for this application. Through both simulation and experiment, the sufficiency of this condition has been demonstrated. For a sufficient stability condition, recall that if the condition is satified, then the stability is guaranteed` however, if the condition is violated, no conclusion can be made.

  • PDF