• Title/Summary/Keyword: Direct Drive

Search Result 591, Processing Time 0.026 seconds

A High Performance Pressure Control of SR Type Hydraulic Pump System using Direct Instantaneous Torque Control Method (직접순시토크 제어에 의한 SR구동형 유압 펌프시스템의 고성능 압력제어)

  • Ahn, Jin-Woo
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.56 no.10
    • /
    • pp.1751-1756
    • /
    • 2007
  • This paper presents a high performance pressure control scheme for SR(Switched Reluctance) type hydraulic oil pump using DITC(Direct Instantaneous Torque Control). SR drive has a good feature for pump applications due to a high efficiency, high speed and high torque characteristics. But, SR drive has high torque ripple in commutation region. So, the pump pressure variation is high in the region. In order to reduce the pressure variation, DITC combined with pressure control scheme is presented in this paper. A simple PI controller with flow and pressure limit, generates a reference torque to keep the constant actual pump pressure. The direct torque controller of SR drive generates inverter switching signals according to a control rule and a torque estimator. Computer simulation and experiemtal results show the validation of the proposed control scheme.

Analysis to reduce the acceleration time and deceleration time of direct drive robot (직접구동형로봇의 가감속시간 단축에 관한 연구)

  • 임규영;이광남;고광일
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1990.10a
    • /
    • pp.372-376
    • /
    • 1990
  • This paper represents a control method of improving the performance of direct drive robot. The direct transfer of torque and rotational speed of direct drive motor to the robot body without reduction gear makes the robot speed fast. However, the variation of inertia matrix and low friction cause the control difficult, and one more effort must be in the reducing the acceleration and deceleration time to reduce the cycle time. To fasten the cycle time and to improve the robustness of robot, one control method is developed, and implemented in the Goldstar DD robot. This method does not need to change the conventional PI type control structure, but one additional compensational control law is required. The control law can be obtained via inverse dynamic model of robot, and inverse model of existing control loop. The effects of this control law are shown in this paper.

  • PDF

AC-DC Zeta Converter for Power Quality Improvement in Direct Torque Controlled PMSM Drive

  • Singh Bhim;Singh B.P.;Dwivedi Sanjeet
    • Journal of Power Electronics
    • /
    • v.6 no.2
    • /
    • pp.146-162
    • /
    • 2006
  • This paper deals with the analysis, design and implementation of an AC-DC Zeta converter in discontinuous current mode (DCM) of operation used for power quality improvement at AC mains in direct torque controlled (DTC) permanent magnet synchronous motor (PMSM) drives. The designed Zeta converter feeds a direct torque controlled PMSM drive system. Modeling and simulation is carried out in a standard PSIM software environment. Test results are obtained on the developed prototype Zeta converter using DSP ADMC401. The results obtained demonstrate the effectiveness of the Zeta converter in improving power quality at AC mains in the PMSM drive system.

Direct-drive position controller design for the plant with bidirectional load (양방향 부하를 갖는 시스템의 직구동 위치제어기 설계)

  • 최동균;김정운;강치우
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1987.10b
    • /
    • pp.588-593
    • /
    • 1987
  • In this study, direct-drive position controllers are designed and implemented for the flying vehicles actuating system with both positive and negative load factors, where the load factors are assumed proportional to the deflection angle of control surface. Its analog and digital controllers are verified through software simulation and hardware-in-the-loop simulation.

  • PDF

Analysis and Experimental Characterization of Low Speed Direct Drive Fractional Slot Concentrated Winding Surface Permanent Magnet Synchronous Motor with Consequent Pole Rotor

  • Chung, Shi-Uk;Chun, Yon-Do;Moon, Seok-Hwan
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.5
    • /
    • pp.2057-2061
    • /
    • 2015
  • This paper describes analysis and experimental characterization of low speed direct drive fractional slot concentrated winding (FSCW) surface permanent magnet synchronous motor (SPMSM) with consequent pole (CP) rotor, for which studies have been recently performed. The proposed motor, which consists of 30 poles and 36 slots, is analyzed and characterized by extensive 2D finite element analysis (FEA) and together with 3D FEA for an appropriate PM overhang length design. The validity of the analysis is confirmed by the corresponding experiments which fully characterize the proposed motor with excellent agreement between the FEA and the experiments. Thermal stability is also experimentally examined to determine continuous operating points and instantaneous operating points of the proposed motor. It is highly expected that the proposed motor is applicable for low speed direct drive applications.

Analysis of High Torque and Power Densities Outer-Rotor PMFSM with DC Excitation Coil for In-Wheel Direct Drive

  • Ahmad, M.Z.;Sulaiman, E.;Kosaka, T.
    • Journal of Magnetics
    • /
    • v.20 no.3
    • /
    • pp.265-272
    • /
    • 2015
  • In recent years, flux switching machines (FSMs) have been an attractive research topic owing to their tremendous advantages of robust rotor structure, high torque, and high power capability suitable for intensive applications. However, most of the investigations are focusing on the inner-rotor structure, which is incongruous for direct drive applications. In this study, high torque and power densities of a new 12S-14P outer-rotor permanent magnet (PM) FSM with a DC excitation coil was investigated based on two-dimensional finite element analysis for in-wheel direct drive electric vehicle (EV). Based on some design restrictions and specifications, design refinements were conducted on the original design machine by using the deterministic optimization approach. With only 1.0 kg PM, the final design machine achieved the maximum torque and power densities of 12.4 Nm/kg and 5.93 kW/kg, respectively, slightly better than the inner-rotor HEFSM and interior PM synchronous machine design for EV.

Hopping Robot Using Direct-drive Method and Thermal Modeling to Analyze Motor Limitation (Direct-drive를 활용한 소형 연속 도약 로봇 및 DC모터의 열 모델을 통한 한계 분석)

  • Myeongjin Jang;Seongyo Yang;Gwang-Pil Jung
    • The Journal of Korea Robotics Society
    • /
    • v.19 no.1
    • /
    • pp.53-57
    • /
    • 2024
  • A hopping robot can move through a confined environment while overcoming obstacles. To create a small hopping robot, it must be able to generate a large amount of energy and release it at the same time. However, due to the small size of the robot, there is a limit to the size of the actuator that can be used, so it is mainly used to collect energy in an elastic element and release it at once. In this paper, we propose a small hopping robot with a simplified design by removing ancillary parts and enabling continuous hopping using only a small actuator based on a direct-drive method. In addition, repeated actuation over the rated voltage can cause thermal breakdown of the actuator. To check the safety of the actuator at high voltage, we perform modeling to predict the temperature of the actuator and verify the accuracy of the modeling through experiments.

Direct Seek Control for Swing-arm Type Dual Stage Actuators in Blu-Ray Disc Drive Systems

  • Ryu, Shi-Yang;Jung, Soo-Yul;Yoon, Hyeong-Deok;Park, In-Shik
    • Proceedings of the KIEE Conference
    • /
    • 2003.11c
    • /
    • pp.735-739
    • /
    • 2003
  • This paper presents a direct seek control algorithm for swing-arm type dual stage servo system that consists of a coarse actuator and a fine actuator. The proposed scheme is to design a control system that attenuates the effect of dynamic coupling between the two actuators so that the seek operation can be performed in a single-shot with stability. In an optical drive system with dual stage servo mechanism, the effect of dynamic coupling between the two actuators needs to be handled during the coarse seek operation due to its inherent structure. In an extreme case, the two actuators can collide each other, which leads to critical degradation of the seek performance. To handle this problem, our proposed control scheme is to generate the drive signals such that the two actuators behave as if they are a single fixed body. To this end, a feedforward controller and two feedback controllers are designed that enable the current drive system perform wide range of track seek. Simulation results are provided to show the validity and feasibility of our proposed algorithm.

  • PDF

Precise Speed Control of Direct Drive PMSM for the Cogging Torque Measurement System (코깅토크 측정장치 직접구동용 영구자석 동기전동기의 정밀속도 제어)

  • Park, Cheol-Hoon;Son, Young-Su;Ham, Sang-Yong;Kim, Byung-In;Yun, Dong-Won
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.26 no.5
    • /
    • pp.79-86
    • /
    • 2009
  • Recently PMSM(Permanent magnet synchronous motor) are used for the various direct drive applications such as index table, telescope system and so on. Because the position/speed control performance of direct drive PMSM is directly affected by the torque ripple, there are lots of studies to reduce the cogging torque in the motor design stage. In order to verify the motor design, the reliable cogging torque measurement system is essentially required. The measured motor must be rotated in the constant speed under 1deg/sec so that the cogging torque profile is measured correctly. In this study, the cogging torque measurement system which uses the direct drive PMSM and the speed controller to rotate the measured motor in 0.1rpm(0.6deg/sec) has been developed. Simulink/xPC target was used for the controller and data acquisition system. Based on PI controller, DOB and AFC have been applied to eliminate the low frequency disturbances and the periodic speed ripple. The experimental results show the good performance of the speed regulation for the reference speed 0.1rpm and the reliable profile of the measured cogging torque by the developed speed controller.

Analysis of Cascaded H-Bridge Multilevel Inverter in DTC-SVM Induction Motor Drive for FCEV

  • Gholinezhad, Javad;Noroozian, Reza
    • Journal of Electrical Engineering and Technology
    • /
    • v.8 no.2
    • /
    • pp.304-315
    • /
    • 2013
  • In this paper, analysis of cascaded H-bridge multilevel inverter in DTC-SVM (Direct Torque Control-Space Vector Modulation) based induction motor drive for FCEV (Fuel Cell Electric Vehicle) is presented. Cascaded H-bridge multilevel inverter uses multiple series units of H-bridge power cells to achieve medium-voltage operation and low harmonic distortion. In FCEV, a fuel cell stack is used as the major source of electric power moreover the battery and/or ultra-capacitor is used to assist the fuel cell. These sources are suitable for utilizing in cascaded H-bridge multilevel inverter. The drive control strategy is based on DTC-SVM technique. In this scheme, first, stator voltage vector is calculated and then realized by SVM method. Contribution of multilevel inverter to the DTC-SVM scheme is led to achieve high performance motor drive. Simulations are carried out in Matlab-Simulink. Five-level and nine-level inverters are applied in 3hp FCEV induction motor drive for analysis the multilevel inverter. Each H-bridge is implemented using one fuel cell and battery. Good dynamic control and low ripple in the torque and the flux as well as distortion decrease in voltage and current profiles, demonstrate the great performance of multilevel inverter in DTC-SVM induction motor drive for vehicle application.