• Title/Summary/Keyword: Direct Design Method

Search Result 1,308, Processing Time 0.026 seconds

Blank Design for Sheet Metal Product Based on Direct Design Method (직접설계법에 의한 박판부품의 초기형상설계)

  • 윤정환;김상국;정관수;연의정
    • Transactions of Materials Processing
    • /
    • v.9 no.6
    • /
    • pp.598-603
    • /
    • 2000
  • In order to improve trial-and-error based conventional practices for optimizing forming processes, a direct design method to guide iterative design practices, called the ideal forming theory, has been previously developed. In the theory, material elements are required to deform following the minimum Plastic work Path. The theory can be used to determine the ideal initial blank shape needed to best achieve a specified final shape while resulting in optimum strain distributions. In this work, the direct design method based on the ideal forming theory was applied to design initial design shape for VCR deck chassis. Based on the solution of the ideal forming theory, FEM analysis was utilized to evaluate an optimum blank shape to be formed without tearing. Simulation results are in good agreement with experimental data. It was shown that the proposed sequential design procedure based on direct design method and FEM can be successfully applied to optimize the die design Procedure of sheet metal forming processes.

  • PDF

Direct design of partially prestressed concrete solid beams

  • Alnuaimi, A.S.
    • Structural Engineering and Mechanics
    • /
    • v.27 no.6
    • /
    • pp.741-771
    • /
    • 2007
  • Tests were conducted on two partially pre-stressed concrete solid beams subjected to combined loading of bending, shear and torsion. The beams were designed using the Direct Design Method which is based on the Lower Bound Theorem of the Theory of Plasticity. Both beams were of $300{\times}300mm$ cross-section and 3.8 m length. The two main variables studied were the ratio of the maximum shear stress due to the twisting moment, to the shear stress arising from the shear force, which was varied between 0.69 and 3.04, and the ratio of the maximum twisting moment to the maximum bending moment which was varied between 0.26 and 1.19. The required reinforcement from the Direct Design Method was compared with requirements from the ACI and the BSI codes. It was found that, in the case of bending dominance, the required longitudinal reinforcements from all methods were close to each other while the BSI required much larger transverse reinforcement. In the case of torsion dominance, the BSI method required much larger longitudinal and transverse reinforcement than the both the ACI and the DDM methods. The difference in the transverse reinforcement is more pronounce. Experimental investigation showed good agreement between design and experimental failure loads of the beams designed using the Direct Design Method. Both beams failed within an acceptable range of the design loads and underwent ductile behaviour up to failure. The results indicate that the Direct Design Method can be successfully used to design partially prestressed concrete solid beams which cater for the combined effect of bending, shear and torsion loads.

Optimum Design of the Process Parameter in Sheet Metal Forming with Design Sensitivity Analysis using the Direct Differentiation Approach (I) -Design Sensitivity Analysis- (직접미분 설계민감도 해석을 이용한 박판금속성형 공정변수 최적화 (I) -설계민감도 해석 -)

  • Kim, Se-Ho;Huh, Hoon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.11
    • /
    • pp.2245-2252
    • /
    • 2002
  • Design sensitivity analysis scheme is proposed in an elasto -plastic finite element method with explicit time integration using a direct differentiation method. The direct differentiation is concerned with large deformation, the elasto-plastic constitutive relation, shell elements with reduced integration and the contact scheme. The design sensitivities with respect to the process parameter are calculated with the direct analytical differentiation of the governing equation. The sensitivity results obtained from the present theory are compared with that obtained by the finite difference method in a class of sheet metal forming problems such as hemi-spherical stretching and cylindrical cup deep-drawing. The result shows good agreement with the finite difference method and demonstrates that the preposed sensitivity calculation scheme is a pplicable in the complicated sheet metal forming analysis and design.

Analysis and comparison of the 2D/1D and quasi-3D methods with the direct transport code SHARK

  • Zhao, Chen;Peng, Xingjie;Zhang, Hongbo;Zhao, Wenbo;Li, Qing;Chen, Zhang
    • Nuclear Engineering and Technology
    • /
    • v.54 no.1
    • /
    • pp.19-29
    • /
    • 2022
  • The 2D/1D method has become the mainstream of the direct transport calculation considering the balance of accuracy and efficiency. However, the 2D/1D method still suffers from stability issues. Recently, a quasi-3D method has been proposed with axial Legendre expansion. Analysis and comparison of the 2D/1D and quasi-3D method is conducted in theory from the equation derivation. Besides, the C5G7 benchmark, the KUCA benchmark and the macro BEAVRS benchmark are calculated to verify the theory comparisons of these two methods with the direct transport code SHARK. All results show that the quasi-3D method has better stability and accuracy than the 2D/1D method with worse efficiency and memory cost. It provides a new option for direct transport calculation with the quasi-3D method.

Direct strength method for high strength steel welded section columns

  • Choi, Jong Yoon;Kwon, Young Bong
    • Steel and Composite Structures
    • /
    • v.29 no.4
    • /
    • pp.509-526
    • /
    • 2018
  • The direct strength method adopted by the AISI Standard and AS/NZS 4600 is an advanced design method meant to substitute the effective width method for the design of cold-formed steel structural members accounting for local instability of thin plate elements. It was proven that the design strength formula for the direct strength method could predict the ultimate strength of medium strength steel welded section compressive and flexural members with local buckling reasonably. This paper focuses on the modification of the direct strength formula for the application to high strength and high performance steel welded section columns which have the nominal yield stress higher than 460 MPa and undergo local buckling, overall buckling or their interaction. The resistance of high strength steel welded H and Box section columns calculated by the proposed direct strength formulae were validated by comparison with various compression test results, FE results, and predictions by existing specifications.

Direct Inelastic Slab Design (직접비탄성 슬래브 설계법의 개발)

  • Jung Won-Hee;Park Hong-Gun
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.05a
    • /
    • pp.498-501
    • /
    • 2004
  • A new slab design using secant stiffness, Direct Inelastic Slab Design, was developed. Since basically the proposed design method uses linear analysis, it is convenient and stable in numerical analysis. At the same time, the proposed design method can accurately estimate the inelastic strength and ductility demands of slab because it can analyzes the inelastic behavior of structure using iterative calculations for secant stiffness. In the present study, the procedure of the proposed design method was established, and a computer program incorporating the proposed method was developed. Design examples using the proposed method were presented, and compared with traditional nonlinear analysis, and experiments. The Direct Inelastic Slab Design, as an integrated analysis/design method, can directly address the design strategy intended by the engineer, such as moment strength and ductility limit. As a result, economical and safe design can be achieved.

  • PDF

Development of Pareto strategy multi-objective function method for the optimum design of ship structures

  • Na, Seung-Soo;Karr, Dale G.
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.8 no.6
    • /
    • pp.602-614
    • /
    • 2016
  • It is necessary to develop an efficient optimization technique to perform optimum designs which have given design spaces, discrete design values and several design goals. As optimization techniques, direct search method and stochastic search method are widely used in designing of ship structures. The merit of the direct search method is to search the optimum points rapidly by considering the search direction, step size and convergence limit. And the merit of the stochastic search method is to obtain the global optimum points well by spreading points randomly entire the design spaces. In this paper, Pareto Strategy (PS) multi-objective function method is developed by considering the search direction based on Pareto optimal points, the step size, the convergence limit and the random number generation. The success points between just before and current Pareto optimal points are considered. PS method can also apply to the single objective function problems, and can consider the discrete design variables such as plate thickness, longitudinal space, web height and web space. The optimum design results are compared with existing Random Search (RS) multi-objective function method and Evolutionary Strategy (ES) multi-objective function method by performing the optimum designs of double bottom structure and double hull tanker which have discrete design values. Its superiority and effectiveness are shown by comparing the optimum results with those of RS method and ES method.

Optimal Design of Direct-Driven Wind Generator Using Mesh Adaptive Direct Search(MADS) (MADS를 이용한 직접구동형 풍력발전기 최적설계)

  • Park, Ji-Seong;An, Young-Jun;Lee, Cheol-Gyun;Kim, Jong-Wook;Jung, Sang-Yong
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.23 no.12
    • /
    • pp.48-57
    • /
    • 2009
  • This paper presents optimal design of direct-driven PM wind generator using MADS (Mesh Adaptive Direct Search). Optimal design of the direct-driven PM Wind Generator, combined with MADS and FEM (Finite Element Method), has been performed to maximize the Annual Energy Production (AEP) over the whole wind speed characterized by the statistical model of the wind speed distribution. In particular, the newly applied MADS contributes to reducing the computation time when compared with Genetic Algorithm (GA) implemented with the parallel computing method.

A Study on the Application Traditional Design Elements for Contemporary Interior Space (현대실내공간에서의 전통의장요소 활용에 관한 연구)

  • Jun, Kyong-Hee;Nam, Kyung-Sook
    • Proceedings of the Korean Institute of Interior Design Conference
    • /
    • 2005.05a
    • /
    • pp.116-121
    • /
    • 2005
  • This research against the method of applying a traditional design elements to modern interior space is classified and analyzed by direct expression method, a transfigure expression method, a metaphor expression method and a symbol expression method. The direct expression method means the modernizing the traditional design elements by expressing traditional material and structural formative style as they are, and the transfigure expression method is the design method of re-organizing the elements by simplifying and transfiguring the traditional design elements. Metaphor expression method includes the method of expressing visually the formative concept which does not known concretely, and the symbol expression method exchanges the rising concepts into concrete elements and expresses by new design.

  • PDF

Estimation of Design Discharge Considering Nonstationarity for River Restoration in the Mokgamcheon (목감천 복원설계를 위한 비정상성을 고려한 설계홍수량의 산정)

  • Lee, Kil Seong;Oh, Jin-Ho;Park, Kidoo;Sung, Jang-Hyun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.33 no.4
    • /
    • pp.1361-1375
    • /
    • 2013
  • The design flow considering nonstationarity is estimated to determine the design flood related to hydraulic structure quantitatively based on the design process for stream restoration in the Mokgamcheon watershed proposed by Lee et al. (2011). The purpose of this research is to suggest new ways that the design flood was calculated considering nonstationarity at the Mokgamcheon watershed. Storm-unit hydrograph method to calculate design flood and direct frequency analysis were applied and nonstationarity was considered for the frequency analysis through extRemes toolkit developed at NCAR (National Center for Atmospheric Research). Although the method of direct flood frequency analysis due to dealing with flowrates directly has a more reliable than strom-unit hydrograph method, as a result, the method of direct flood frequency analysis underestimated the design flood than strom-unit hydrograph method due to the characteristics of the flow data. Therefore, the flood of storm-unit hydrograph method (100 years frequency) was determined as the design flood in the Mokgamcheon watershed.