• Title/Summary/Keyword: Direct Current (DC)

Search Result 432, Processing Time 0.025 seconds

Investigation of On-line Monitoring Method on 1500 V Direct Current Cable of Subway

  • Shen, Xiaojun;Jiang, Xiuchen;Yi, Zeng
    • Transactions on Electrical and Electronic Materials
    • /
    • v.7 no.5
    • /
    • pp.247-251
    • /
    • 2006
  • The traction DC feeder cable is one of the key devices for the safety operation of subway system, but for low voltage DC feeder cable (<3000 V) for subway, little attention has been paid by investigators on its online monitoring technology. With an introduction of cable laying and operation environment for the cable, this paper investigated the on-line monitoring technology of 1500 V DC feeder cable of subway. Firstly, in the text, the fault model of 1500 V DC cable was proposed based on the analysis of the fault type of the DC feeder cable, and then put forward synthetically on-line monitoring discharge signal and DC leakage current signal to assess DC feeder cable insulating state. The results of laboratory experiment prove that the proposed methods are feasible and can be implemented on-line monitor on DC feeder cable of subway.

DC-link Voltage Control of HVDC for Offshore Wind Farm using Improved De-loading Method (개선된 De-loading기법을 이용한 해상풍력 연계용 HVDC의 DC 전압의 제어방안)

  • Huh, Jae-Sun;Moon, Won-Sik;Park, Sang-In;Kim, Doo-Hee;Kim, Jae-Chul
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.64 no.3
    • /
    • pp.399-404
    • /
    • 2015
  • This paper presents the DC voltage control method in DC link of High Voltage Direct Current(HVDC) for an offshore wind farm in Low Voltage Ride Through(LVRT) situation. Wind generators in an offshore wind farm are connected to onshore network via HVDC transmission. Due to LVRT control of grid side inverter in HVDC, power imbalancing in DC link is generated and this consequentially causes rising of DC voltage. A de-loading scheme is one of the method to protect the wind power system DC link capacitors from over voltage. But the flaw of this method is slow control response time and that it needs long recovery time to pre-fault condition after fault clear. Thus, this paper proposes improved de-loading method and we analyze control performance for DC voltage in LVRT control of HVDC for an offshore wind farm.

DC Current sensor using the saturable magnetic cores (자성체포화를 이용한 DC전류센서)

  • Park, Y.T.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.07b
    • /
    • pp.699-702
    • /
    • 2002
  • A DC current sensor is disclosed in which two pairs of saturable cores are provided so as enclose a conductor carrying a direct current to be measured. On each of the saturable cores, a bias winding, a feedback winding and an output winding are wound. Circuit for detection of an asymmetry in the magnetization current, generated by a reference alternating voltage, in a signal-conditioner. The reference alternating voltage is fed to the respective series circuits such that no resultant induction current is induced in the modulating current. The voltages over the resistor form input signals for two peak value detectors, the strength of the output signal of which represents the degree of asymmetry of magnetization current. This paper describes the development a DC current sensor and its signal-conditioner.

  • PDF

Study of Self-excited Resonant DC Circuit Breaker in Future DC Grid (향후 DC 전력 계통에서의 자려 공진 DC 차단기에 관한 연구)

  • Guo, Qinglei;Yoon, Minhan;Jang, Gilsoo
    • Proceedings of the KIEE Conference
    • /
    • 2015.07a
    • /
    • pp.396-397
    • /
    • 2015
  • With the increasing utilization of high-voltage, direct current (HVDC) transmissions in modern power systems, the DC grid is becoming a hot topic in academic and practical systems. In the DC grid, one of the urgent problems is the fast clearance of the DC fault in the DC network. One preferred method is to isolate the faulty point from the DC network in a short time. The DC circuit breaker is to interrupt the overcurrent after DC faults occur. In this paper, a self-excited resonant DC circuit breaker is an easy and cheap equipment to interrupt the DC fault current. The Mayr's arc model is utilized to simulate the self-excited DC circuit breaker in a DC test system in PSCAD/EMTDC.

  • PDF

Mechanical and Tribological Properties of Pulse and Direct Current Electrodeposited Ni-TiO2 Nano Composite Coatings

  • Gyawali, Gobinda;Woo, Dong-Jin;Lee, Soo-Wohn
    • Journal of the Korean institute of surface engineering
    • /
    • v.43 no.6
    • /
    • pp.283-288
    • /
    • 2010
  • Ni-$TiO_2$ nano composite coatings were fabricated using pulse current electrodeposition technique at 100 Hz pulse frequency with a constant 50% pulse duty cycles and reference was taken with respect to the direct current (dc) electrodeposition. The properties of the composite coatings were investigated by using SEM, XRD, Wear test and Vicker's microhardness test. Pulse electrodeposited composite has exhibited enhancement of (111), (220), and (311) diffraction lines with an attenuation of (200) line. The results demonstrated that the microhardness of composite coatings under pulse condition was significantly improved than that of pure nickel coating as well as dc electrodeposited Ni-$TiO_2$ composite coatings. Wear tracks have shown the less plastic deformation in pulse plated composite. Coefficient of friction was also found to be lower in pulse plated composite coatings as compared to dc plated composite coatings.

Direct Torque Control of Brushless DC Motor (브러시리스 DC 전동기의 직접 토오크 제어)

  • Kang, Seog-Joo;Sul, Seung-Ki
    • Proceedings of the KIEE Conference
    • /
    • 1994.07a
    • /
    • pp.475-478
    • /
    • 1994
  • In this paper two methods of torque control for brushless DC motor with non-ideal trapezoidal back EMF are presented. One is the method of modulating the reference current so as to give a constant torque since the torque is given by the back EMF and the. phase currents. And the current control loop includes the feedforward control of back EMF and of the neutral voltage between the neutral points of the inverter and of the machine. The other is a direct voltage calculation algorithm for a given reference torque. In the two methods, the time delay due to the calculation is compensated by one sampling current prediction. The simulation results are presented to verify the proposed methods.

  • PDF

Improved Active Power Filter Performance Based on an Indirect Current Control Technique

  • Adel, Mohamed;Zaid, Sherif;Mahgoub, Osama
    • Journal of Power Electronics
    • /
    • v.11 no.6
    • /
    • pp.931-937
    • /
    • 2011
  • This paper presents a method for the performance improvement of a shunt active power filter (SAPF) using the indirect current control (ICC) scheme. Compared to the conventional direct current control (DCC) scheme, the ICC gives better performance with a lower number of sensors. A simplified and efficient control algorithm using a low cost Intel 80C196KC microcontroller is implemented using only two current sensors for the source current and one voltage sensor for the DC-link voltage of the SAPF circuit. The objective is to eliminate harmonics and to compensate the reactive power produced by non-linear loads such as an uncontrolled rectifier feeding an inductive load. The APF is realized using a three phase voltage source inverter (VSI) with a dc bus capacitor. Experimental results are presented to prove the better performance of the ICC method over the DCC one.

Novel Topology and Control Strategy of HVDC Grid Connection for Open Winding PMSG based Wind Power Generation System

  • Zeng, Hengli;Nian, Heng
    • Journal of international Conference on Electrical Machines and Systems
    • /
    • v.3 no.2
    • /
    • pp.215-221
    • /
    • 2014
  • To satisfy the high voltage direct current (HVDC) grid connection demand for wind power generation system, a novel topology and control strategy of HVDC grid connection for open-winding permanent magnet synchronous generator (PMSG) based wind power generation system is proposed, in which two generator-side converter and two isolated DC/DC converters are used to transmit the wind energy captured by open winding PMSG to HVDC grid. By deducing the mathematic model of open winding PMSG, the vector control technique, position sensorless operation, and space vector modulation strategy is applied to implement the stable generation operation of PMSG. Finally, the simulation model based on MATLAB is built to validate the availability of the proposed control strategy.

Module Type Parallel Driving Algorithm for High Voltage Direct-Current source (고전압 소스를 위한 모듈식 병렬운전 알고리즘)

  • Woo, Byung-Guk;Lee, Yong-Hwa;Kang, Chan-Ho;Cho, Kwan-Yuhl
    • Proceedings of the KIPE Conference
    • /
    • 2008.06a
    • /
    • pp.24-27
    • /
    • 2008
  • For high voltage DC-DC converters, the parallel operation of several high voltage source modules is necessary to reduce the material cost. In the conventional parallel operation with HDC module control unit, it is difficult to repair the HDC system for the failure of control unit. To overcome these problems, new parallel operating algorithm for high voltage DC-DC converter is presented. The proposed algorithm has no main control unit and each module can be selected as the master according to the operating conditions. Therefore, one of modules can be replaced as the master immediately when the previous master module is failed. In addition, the extension of extra modules can be simple.

  • PDF

Bluetooth Low-Energy Current Sensor Compensated Using Piecewise Linear Model

  • Shin, Jung-Won
    • Journal of Sensor Science and Technology
    • /
    • v.29 no.5
    • /
    • pp.283-292
    • /
    • 2020
  • Current sensors that use a Hall element and Hall IC to measure the magnetic fields generated in steel silicon core gaps do not distinguish between direct and alternating currents. Thus, they are primarily used to measure direct current (DC) in industrial equipment. Although such sensors can measure the DC when installed in expensive equipment, ascertaining problems becomes difficult if the equipment is set up in an unexposed space. The control box is only opened during scheduled maintenance or when anomalies occur. Therefore, in this paper, a method is proposed for facilitating the safety management and maintenance of equipment when necessary, instead of waiting for anomalies or scheduled maintenance. A Bluetooth 4.0 low-energy current-sensor system based on near-field communication is used, which compensates for the nonlinearity of the current-sensor output signal using a piecewise linear model. The sensor is controlled using its generic attribute profile. Sensor nodes and cell phones used to check the signals obtained from the sensor at 50-A input currents showed an accuracy of ±1%, exhibiting linearity in all communications within the range of 0 to 50 A, with a stable output voltage for each communication segment.