• 제목/요약/키워드: Direct Cooling Type

검색결과 58건 처리시간 0.029초

HEPA Filter형 숨쉬는 벽체용 나노세라믹 여재개발 (Development of Nano Ceramic Structures for HEPA Type Breathing Wall)

  • 김종원;안영철;김길태
    • 설비공학논문집
    • /
    • 제20권4호
    • /
    • pp.274-279
    • /
    • 2008
  • In the perspective of saving energy in buildings, high performance of insulation and air tightness for improving the heating and the cooling efficiency has brought the positive effect in an economical view. However, these building energy saving technologies cause the lack of ventilation, which is the direct cause of increasing the indoor contaminants, and it is also very harmful to residents because they spend over 90% of their time in the indoor area. Therefore, the ventilation is important to keep indoor environment clean and it can also save energy consumption. In this study, a HEPA type breathing wall is designed as a passive ventilation system to collect airborne particles and to supply fresh outdoor air. To make fine porous structures, polymer nano fibers which were made by electro spinning method are used as a precursor. The nano fibers are coated with SiO2 nano particles and finally the HEPA type breathing wall is made by sintering in the electric furnace at $300\sim500^{\circ}C$. The pressure drops of nano ceramic structure are 8.2, 25.5 and 44.9 mmAq at the face velocity of 2.0, 5.9 and 8.8 cm/s, respectively. Also the water vapor permeability is $3.6g/m^2{\cdot}h{\cdot}mmHg$. In this research, the porous nano ceramic structures are obtained and the possibility for the usage of a material for HEPA type breathing wall can be obtained.

INVESTIGATIONS ON THE RESOLUTION OF SEVERE ACCIDENT ISSUES FOR KOREAN NUCLEAR POWER PLANTS

  • Kim, Hee-Dong;Kim, Dong-Ha;Kim, Jong-Tae;Kim, Sang-Baik;Song, Jin-Ho;Hong, Seong-Wan
    • Nuclear Engineering and Technology
    • /
    • 제41권5호
    • /
    • pp.617-648
    • /
    • 2009
  • Under the government supported long-term nuclear R&D program, the severe accident research program at KAERI is directed to investigate unresolved severe accident issues such as core debris coolability, steam explosions, and hydrogen combustion both experimentally and numerically. Extensive studies have been performed to evaluate the in-vessel retention of core debris through external reactor vessel cooling concept for APR1400 as a severe accident management strategy. Additionally, an improvement of the insulator design outside the vessel was investigated. To address steam explosions, a series of experiments using a prototypic material was performed in the TROI facility. Major parameters such as material composition and void fraction as well as the relevant physics affecting the energetics of steam explosions were investigated. For hydrogen control in Korean nuclear power plants, evaluation of the hydrogen concentration and the possibility of deflagration-to-detonation transition occurrence in the containment using three-dimensional analysis code, GASFLOW, were performed. Finally, the integrated severe accident analysis code, MIDAS, has been developed for domestication based on MELCOR. The data transfer scheme using pointers was restructured with the modules and the derived-type direct variables using FORTRAN90. New models were implemented to extend the capability of MIDAS.

창덕궁 낙선재 외피 열류량 실측을 통한 열관류율 산정 및 열 성능 해석 (Overall Heat Transfer Coefficients and Thermal Performance Evaluation through Heat Flux Measurement at Nakseonjae in Changdeokgung)

  • 김민휘;김진효;권오현;한욱;정재원
    • 한국태양에너지학회:학술대회논문집
    • /
    • 한국태양에너지학회 2008년도 추계학술발표대회 논문집
    • /
    • pp.190-195
    • /
    • 2008
  • The objective of this research is to determine overall heat transfer coefficients (K-value) of exterior wall, floor, and roof of Nakseonjae, a Korean traditional residence via field measurement of transient heat flow and temperature difference across each envelope component. Heat flow sensors and T-type thermocouple were attached on the internal and the external surface of each building component, and real-time measurement data were collected for the three consecutive summer days. The K-values determined in this research showed good agreement with other results from open literature. Peak and annual thermal loads of the traditional residence estimated by a commercial energy simulation program were compared with those for a current apartment house. The traditional house showed lower annual cooling load than that of the current building. It may caused by the fact that the traditional building has less air-tight envelopes and no fenestration passing direct solar radiation into the space.

  • PDF

태양광무인기를 위한 박막형 태양전지의 입사각 및 온도에 따른 성능분석 (Effects of the Incidence Angle and Temperature on the Performance of a Thin-Film CIGS Solar Cell for Solar Powered UAVs)

  • 신동훈;김태호
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2011년도 추계학술대회 초록집
    • /
    • pp.55.2-55.2
    • /
    • 2011
  • This research aims to study the effects of the incidence angle and surface temperature on the power generation performance of a thin-film CIGS solar cell for solar powered unmanned aerial vehicles (UAVs). The test rig consists of a unit CIGS solar cell is installed on a table whose angle is controlled manually. A K-type thermocouple is attached to the solar cell surface for temperature measurements. A solar module analyzer measures the voltage and current generated from the test solar cell. The solar module analyzer also calculates the maximum solar power and efficiency of the solar cell. All test data are acquired in a PC. Test results show that the solar cell efficiency decreases significantly with increasing incidence angle and increasing surface temperature in general. As the incidence angle increases from 0 degree to 90 degree, the solar cell efficiency decreases by 60%. The solar cell efficiency decreases by 10% with increasing solar cell surface temperature from $20^{\circ}C$ to $30^{\circ}C$, for exmaple. The direct cooling method of the solar cell using dry ice decreases dramatically the solar cell surface temperature, thus increasing the solar cell efficiency by 15%.

  • PDF

폭방향 두께제어를 고려한 용탕직접 압연로울의 최적형상 설계기법 (Optimum Shape Design Techniques on Direct Roller of Molten Metal Considering Thickness Control of Width Direction)

  • 강충길;김영도;정영진
    • 한국정밀공학회지
    • /
    • 제14권12호
    • /
    • pp.73-85
    • /
    • 1997
  • The rolling force and roll deformation behavior in the twin roll type strip continuous casting process has been computed to estimate the thermal charcteristics of a caster roll. To calculation of rolling force, the relationship between flow stress and strain for a roll material and casting alloy are assumed as a function of strain-rate and temperature because mechanical properties of a casting materials depends on tempera- ture. The three dimensional thermal dlastic-plastic analysis of a cooling roll has also been carried out to obtain a roll stress and plastic strain distributions with the commercial finite element analysis package of ANSYS. Temperature fields data of caster roll which are provided by authors were used to estimated of roll deformation. Roll life considering thermal cycle is calculated by using thermal elastic-plastic analysis results. Roll life is proposed as a terms of a roll revolution in the caster roll with and without fine failure model on the roll surface. To obtain of plastic strain distributions of caster roll, thermomechan- ical properties of roll sleeve with a copper alloy is obtained by uniaxial tensile test for variation of temperature.

  • PDF

Effect of inlet throttling on thermohydraulic instability in a large scale water-based RCCS: An experimental study

  • Qiuping Lv;Matthew Jasica;Darius Lisowski;Zhiee Jhia Ooi;Rui Hu;Mitch Farmer
    • Nuclear Engineering and Technology
    • /
    • 제56권2호
    • /
    • pp.655-665
    • /
    • 2024
  • The objective of the present experimental study is to investigate the effect of inlet throttling on the thermohydraulic stability of a large scale water-based Reactor Cavity Cooling System (RCCS). The test was performed using the water-based Natural convection Shutdown heat removal Test Facility (NSTF) at Argonne, which represented a ½ axial scale and 12.5° sector slice of the full scale Framatome 625 MWt SC-HTGR RCCS concept. A two-phase steady state was first established through direct condensate refill, followed by increased inlet throttling over 10 stages, corresponding to a loss coefficient K over the range of 0.05-653. With the inlet throttling gradually increased, the system experienced a unique transition process between stabilization and destabilization. Through a stability analysis, three instability mechanisms were identified in the present test, including a compound mechanism due to both natural circulation oscillations (NCOs) and density wave oscillations (DWOs), Type-II DWOs, and geysering.

국내 쌀 가공식품의 개발현황과 당면과제 (Current Status and Recent Subjects of Rice Products Development in Korea)

  • 금준석
    • 한국식품저장유통학회:학술대회논문집
    • /
    • 한국식품저장유통학회 2002년도 창립 10주년 기념 국제학술심포지움
    • /
    • pp.109-119
    • /
    • 2002
  • Rice production in Korea began to rise significantly after 1970. Rice is the dominant food in Korea and most of the rice production (about 95%) is consumed as cooked rice. it provides over 4,000Kj of energy per capita per day. Apparent rice availability in 2000, 93.6Kg of milled rice per person annually. The non-allergenic character of rice offers a sound basis for development of products for markets for all age groups. Whole grains are washed rice, coated rice, enriched rice in Korea. Utilization of rice as food can be categorized three categories in Korea; direct food use, processed foods, and brewing. Rice for direct consumption include regular whole grain, precooked rice, brown rice and specialty products such as aseptic cooked rice, retort cooked rice and rice burger. Rice used for processed foods includes that for cereal, soup, baby food, snack, cake, noodle, brown rice tea, and minor unclassified uses. Rice use for brewing is for the production of fermented rice wine. The use of rice for direct food is by for the greatest of the three uses. Although direct food accounts for the largest domestic consumption, a significant quantity of rice is used in processed products. The use of rice by-products as human food should not be over looked. Utilization of by products(rice germ, rice bran) requires a specialized technology. Typical type of rice is black rice. When cooked, black rice gives a black color to cooked rice. Glutinous rice performs specific functions in several commercial products such as dessert, gravis, cake and snack. Rice starch production is quite limited because of the high cost of making of starch. Rice processed products in Korea are occupied small parts of total rice production compared to Japan. Rice cake (Garadog) is the principal from of rice product consumed in Korea. Rice cake and snack is usually prepared from non-glutinous milled by washing, grinding, steaming, cooling and packaging. Rice cake will be continued to be a major rice product in Korea. Rice products represent a means to study variety differences in rice grain quality, since the processing magnifies differences not normally detected from more boiling. Recently, rice processing companies in Korea are about 400 ones which uses rice about 160,000tons. New rice processed products and modified traditional products must be developed and diversified with high quality and processing properties of rice processed products are improved.

  • PDF

지하수 이용을 위한 열교환기 개발. II - 지하수이용 냉·난방기 설계제작 - (Development of heat exchanger for underground water heat. II - Design and manufacture for heat exchanger of underground water -)

  • 이운용;안덕현;김상철;박우풍;강용구;김선배
    • 현장농수산연구지
    • /
    • 제4권1호
    • /
    • pp.128-137
    • /
    • 2002
  • 개발된 알루히트를 이용하여 지하수 이용 열교환기를 개발하였다. 시작기는 600mm, 700mm 알루히트 19개의 끝을 U자 용접을 하여 지하수가 직렬흐름이 되도록 2가지로 제작하였다. 성능시험은 개방된 공간에서 지하수 유량과 공기양의 변화를 주면서 상온에서 실시하였다. 1. 시작기의 열전달 계수는 33~156(W/m2℃) 범위로 나타나 설계가정 값에 잘 일치하는 것으로 판단되었다. 2. 열전달 면적이 증가할수록, 지하수 입·출구의 온도 차이가 클수록, 공기의 입·출구 온도 차이가 클수록, 또 송풍량이 증가할수록 에너지 전달량이 증가하였다. 3. 지하수 입·출구 온도 차이가 6℃ 이고 송풍량이 6,000m3/h일 때 전달 열용량은 6,825W였으며, 공기의 입·출구 온도 차이는 25.8℃에서 23.2℃로 -2.6℃의 강화 효과가 있었고, 대류열전달계수는 88.5W/m2℃ 였다. 4. 지하수 입·출구 온도 차이가 2℃ 이고 송풍량이 4,000m3/h일 때 전달 열용량은 2,625W으로 작았지만, 공기의 입·출구 온도 차이는 27℃에서 22.5℃로 -4.5℃의 강화 효과가 있었고, 대류열전달계수는 33.6W/m2℃였다. 5. 시작기 I, II, III의 전달 열용량 데이터 각각의 상관계수 R2은 0.9141, 0.8935, 0.9393이었으며, 공기유량이 6,000m3/h, 5,000m3/h, 4,000m3/h일 때 각각의 데이터 상관계수 R2은 0.9513, 0.9414, 0.9003으로 신뢰할 수 있었다.

소형로봇용 500W급 연료전지 스택무게 최적화 설계 (Design Optimization of a 500W Fuel Cell Stack Weight for Small Robot Applications)

  • 황순욱;최경호;박용헌;;;이상철;권오성;이동하
    • 한국태양에너지학회 논문집
    • /
    • 제32권spc3호
    • /
    • pp.275-281
    • /
    • 2012
  • Proton Exchange Membrane Fuel Cells (PEMFC) are the most appropriate for energy source of small robot applications. PEMFC has superior in power density and thermodynamic efficiency as compared with the Direct Methaol Fuel Cell (DMFC). Furthermore, PEMFC has lighter weight and smaller size than DMFC which are very important factors as small robot power system. The most significant factor of mobile robots is weight which relates closely with energy consumption and robot operation. This research tried to find optimum specifications in terms of type, number of cell, active area, cooling method, weight, and size. In order to find optimum 500W PEMFC, six options are designed in this paper and studied to reduce total stack weight by applying new materials and design innovations. However, still remaining problems are thermal management, robot space for energy sources, and soon. For a thermal management, design options need to analysis of Computational Fluid Dynamics (CFD) for determining which option has the improved performance and durability.

터널 화재시 종류식 환기가 연소율 변화에 미치는 영향에 관한 실험적 연구 (An Experimental Study on the Effect of Longitudinal Ventilation on the Variation of Burning Rate in Tunnel Fires)

  • 양승신;김성찬;유홍선
    • 터널과지하공간
    • /
    • 제15권1호
    • /
    • pp.55-60
    • /
    • 2005
  • 본 연구는 터널내 화재 발생시 종류식 환기가 연소율 변화에 미치는 영향을 파악하기 위하여 Froude scaling에 의해 1/20크기로 축소한 모형화재 실험을 수행하였다. 화원으로는 $8.5cm{\sim}14.5cm$의 메탄올을 사용하였으며 발열량은 $3.57{\sim}10.95kW$이다. 연소율은 로드셀을 이용하여 산출하였고, 연기거동을 파악하기 위하여 K형 열전대를 이용하여 온도분포를 측정하였다. 풍동은 터널의 한쪽부분과 연결하였고, 터널 공간의 배연속도를 제어하기 위하여 풍동의 전압을 조절하였다. 메탄올 화재인 경우 배연속도가 증가할수록 냉각효과로 인하여 연소율은 감소하였으며, 또한 같은 무차원속도(V)일때 화원 크기가 커짐에 따라 연소율은 감소하였다.