DOI QR코드

DOI QR Code

Effect of inlet throttling on thermohydraulic instability in a large scale water-based RCCS: An experimental study

  • Qiuping Lv (Argonne National Laboratory, Nuclear Science & Engineering Division) ;
  • Matthew Jasica (Argonne National Laboratory, Nuclear Science & Engineering Division) ;
  • Darius Lisowski (Argonne National Laboratory, Nuclear Science & Engineering Division) ;
  • Zhiee Jhia Ooi (Argonne National Laboratory, Nuclear Science & Engineering Division) ;
  • Rui Hu (Argonne National Laboratory, Nuclear Science & Engineering Division) ;
  • Mitch Farmer (Argonne National Laboratory, Nuclear Science & Engineering Division)
  • Received : 2023.06.08
  • Accepted : 2023.10.31
  • Published : 2024.02.25

Abstract

The objective of the present experimental study is to investigate the effect of inlet throttling on the thermohydraulic stability of a large scale water-based Reactor Cavity Cooling System (RCCS). The test was performed using the water-based Natural convection Shutdown heat removal Test Facility (NSTF) at Argonne, which represented a ½ axial scale and 12.5° sector slice of the full scale Framatome 625 MWt SC-HTGR RCCS concept. A two-phase steady state was first established through direct condensate refill, followed by increased inlet throttling over 10 stages, corresponding to a loss coefficient K over the range of 0.05-653. With the inlet throttling gradually increased, the system experienced a unique transition process between stabilization and destabilization. Through a stability analysis, three instability mechanisms were identified in the present test, including a compound mechanism due to both natural circulation oscillations (NCOs) and density wave oscillations (DWOs), Type-II DWOs, and geysering.

Keywords

Acknowledgement

This work was supported by the U.S. Department of Energy Office of Nuclear Energy's Advanced Reactor Technology (ART) program under contract number DE-AC02-06CH11357.

References

  1. D. Lisowski, Q. Lv, B. Alexandreanu, Y. Chen, R. Hu, T. Sofu, "Technical Letter Report: an Overview of Non-LWR Vessel Cooling Systems for Passive Decay Heat Removal," ANL/NSE-21/3, Argonne National Laboratory, May 2021. 
  2. D. Lisowski, C. Gerardi, D. Kilsdonk, N. Bremer, S. Lomperski, R. Hu, A. Kraus, M. Bucknor, Q. Lv, T. Lee, M. Farmer, "Final Project Report on RCCS Testing with the Air-Based NSTF," ANL-ART-47, Argonne National Laboratory, August 2016. 
  3. K. Fukuda, T. Kobori, Classification of two-phase flow instability by density wave oscillation model, J. Nucl. Sci. Technol. 16 (1979) 95-108. 
  4. M. Furuya, F. Inada, T.H.J.J. van der Hagen, Flashing-induced density wave oscillations in a natural circulation BWR - mechanism of instability and stability map, Nucl. Eng. Des. 235 (2005) 1557-1569. 
  5. M. Aritomi, J.H. Chiang, T. Nakahashi, M. Wataru, M. Mori, Fundamental study on thermo-hydraulics during start-up in natural circulation boiling water reactors, (I) thermo-hydraulic instabilities, J. Nucl. Sci. Technol. 29 (1992) 631-641. 
  6. J.H. Chiang, M. Aritomi, M. Mori, Fundamental study on thermo-hydraulics during start-up in natural circulation boiling water reactors, (II) natural circulation oscillation induced by hydrostatic head fluctuation, J. Nucl. Sci. Technol. 30 (1993) 203-211. 
  7. J.H. Chiang, M. Aritomi, M. Mori, M. Higuchi, Fundamental study on thermohydraulics during start-up in natural circulation boiling water reactors, (III) effects of system pressure on geysering and natural circulation oscillation, J. Nucl. Sci. Technol. 31 (1994) 883-893. 
  8. C.P. Marcel, M. Rohde, T.H.J.J. Van Der Hagen, Experimental and numerical investigations on flashing-induced instabilities in a single channel, Exp. Therm. Fluid Sci. 33 (2009) 1197-1208. 
  9. C.P. Marcel, M. Rohde, T.H.J.J. Van Der Hagen, Experimental investigations on flashing-induced instabilities in one and two-parallel channels: a comparative study, Exp. Therm. Fluid Sci. 34 (2010) 879-892. 
  10. D. Lisowski, O. Omotowa, M.A. Muci, A. tokuhiro, M.H. Anderson, M.L. Corradini, Influences of boil-off on the behavior of a two-phase natural circulation loop, Int. J. Multiphas. Flow 60 (2014) 135-148. 
  11. J.A. Boure, A.E. Bergles, L.S. Tong, Review of two-phase flow instability, Nucl. Eng. Des. 25 (1973) 165-192. 
  12. R. Uddin, On density-wave oscillations in two-phase flows, Int. J. Multiphas. Flow 20 (1994) 721-737. 
  13. T.H.J.J. Van Der Hagen, D.D.B. Van Bragt, F.J. Van Der Kaa, J. Karuza, D. Killian, W.H.M. Nissen, A.J.C. Stekelenburg, J.A.A. Wouters, Exploring the dodewaard type-I and type-II stability; from start-up to shutd-down, from stable to unstable, Ann. Nucl. Energy 24 (1997) 659-669. 
  14. A.K. Nayak, P.K. Vijayan, Flow instabilities in boiling two-phase natural circulation systems: a review, Science and Technology of Nuclear Installations 2008 (2008) 1-15. 
  15. M. Furuya, F. Inada, A. Yasuo, Inlet throttling effect on the boiling two-phase flow stability in a natural circulation loop with a chimney, Heat Mass Tran. 37 (2001) 111-115. 
  16. R.P. Mathisen, O. Eklind, An Experimental Study of Natural Circulation in a Loop with Parallel Flow Test Sections, AE-200, Stockholm, Sweden, 1965. 
  17. A.K. Nayak, P.K. Vijayan, D. Saha, Analytical Modeling and Study of the Stability Characteristics of the Advanced Heavy Water Reactor, BARC/2000/E/011, Bhabda Atomic Research Center, Mumbai, India, 2000. 
  18. Y. Zhao, M. Peng, Y. Xu, G. Xia, Simulation investigation on flashing-induced instabilities in a natural circulation system, Ann. Nucl. Energy 144 (2020), 107561. 
  19. AREVA, Water-Cooled RCCS RD Designer Observation Report, 2014. Technical Data Record No.: 12-92372466-000. 
  20. D. Lisowski, C. Gerardi, R. Hu, D. Kilsdonk, N. Bremer, S. Lomperski, A. Kraus, M. Bucknor, Q. Lv, M. Farmer, "Water NSTF Design, Instrumentation, and Test Planning," ANL-ART-98, Argonne National Laboratory, August 2017. 
  21. D. Lisowski, Q. Lv, R. Hu, A. Kraus, N. Bremer, D. Kilsdonk, M. Farmer, "Testing with the Water-Based NSTF: Year-1 Single-phase Results," ANL-ART-175, Argonne National Laboratory, August 2019. 
  22. D. Lisowski, Q. Lv, N. Bremer, R. Hu, A. Kraus, D. Kilsdonk, S. Lomperski, M. Farmer, "Report on Year-2 of Water NSTF Matrix Testing: Two-phase Baseline & Repeatability," ANL-ART-206, Argonne National Laboratory, September 2020. 
  23. Flanged Jamesbury Ball Valves ASME Class 150 & 300 Full Bore: 1/2"-24" (DN15-600), Series 9000. Technical Bulletin B107-2EN, 10/2020. 
  24. M. Furuya, F. Inada, T.H.J.J. Van Der Hagen, Characteristics of type-I density wave oscillations in a natural circulation BWR at relatively high pressure, J. Nucl. Sci. Technol. 42 (2005) 191-200. 
  25. D. Papini, A. Cammi, M. Colombo, M.E. Ricotti, "On Density Wave Instability Phenomena - Modelling and Experimental Investigation,", 2011, pp. 257-284, https://doi.org/10.5772/1043. 
  26. A.H. Stenning, T.N. Veziroglu, Flow oscillations modes in forced convection boiling, in: Proc. 1965 Heat Transfer and Fluid Mech. Inst., 1965, pp. 301-316. 
  27. M.H. Subki, M. Aritomi, N. Watanabe, M.K. Chung, H. Kikur, "Multi parameters effect on thermohydraulic instability in natural circulation boiling water reactor during startup", JSME International Journal 47 (2004) 277-286. 
  28. C.Y. Wu, S.B. Wang, C. Pan, Chaotic oscillations in a low pressure two-phase natural circulation loop under low power and high inlet subcooling conditions, Nucl. Eng. Des. 162 (1996) 223-232. 
  29. F.S. Wang, L.W. Hu, C. Pan, Thermal and stability analysis of a two-phase natural circulation loop, Nucl. Sci. Eng. 117 (1994) 33-46. 
  30. Y.N. Lin, C. Pan, Non-linear analysis for a natural circulation boiling channel, Nucl. Eng. Des. 152 (1994) 349-360. 
  31. D.D.B. Van Bragt, T.H.J.J. Van Der Hagen, Stability of natural circulation boiling water reactors: Part I - description stability model and theoretical analysis in terms of dimensionless groups, Nucl. Technol. 121 (1998) 40-51. 
  32. D.D.B. Van Bragt, T.H.J.J. Van Der Hagen, Stability of natural circulation boiling water reactors: Part II - parametric study of coupled neutronic-thermohydraulic stability, Nucl. Technol. 121 (1998) 52-62. 
  33. M. Furuya, F. Inada, A. Yasuo, Density wave oscillations of a boiling natural circulation loop induced by flashing, in: Proc. 7th Int. Mtg. Nuclear Reactor Thermal-Hydraulics (NURETH-7), Saratoga Sorings, New York, 1995. September 10-15. 
  34. S.Y. Jiang, D. Emendorfer, Analysis of flow oscillations in a natural circulation system taking account of non-equilibrium boiling and void flashing, Kerntechnik 61 (1996) 23. 
  35. S. Shi, M. Ishii, Modeling of flashing-induced flow instabilities for a natural circulation driven novel modular reactor, Ann. Nucl. Energy 101 (2017) 215-225. 
  36. S. Nakanishi, S. Ishigai, M. Ozawa, Y. Mizuta, H. Tarui, Flow instability in boiling channels: 2 geysering, Trans. JSME J. Heat Transfer 44 (1978) 4252-4262. 
  37. C. Tompkins, M. Corradini, Flow pattern transition instabilities in a natural circulation cooling facility, Nucl. Eng. Des. 332 (2018) 267-278. 
  38. D.D. Lisowski, O. Omotowa, M.A. Muci, A. Tokuhiro, M.H. Anderson, M. L. Corradini, Influences of boil-off on the behavior of a two-phase natural circulation loop, Int. J. Multiphas. Flow 60 (2014) 135-148.