• Title/Summary/Keyword: Direct Conversion Receiver

Search Result 77, Processing Time 0.021 seconds

Design of Gain- Tuning Continuous-Time Filter for Direct-Conversion Receiver (직접변환 방식 수신기용 이득 조정 연속시간필터 설계)

  • Kim, Byoung-Wook;Bang, Jun-Ho;Kim, Yeong-Min
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.06a
    • /
    • pp.515-516
    • /
    • 2007
  • A novel design of contious-time filter for direct conversion receiver applications is proposed. The filter supports different modes including GSM, WCDMA. A 5th chebyshev filter is realized in a gm-C filter topology. The filter circuit is implemented in a standard CMOS $0.35{\mu}m$ processing parameter with a supply voltage of 2.5V. The HSPICE results show that the filter has 200KHz and 5MHz cutoff frequency, and each 3.4us and 85.44us gm value.

  • PDF

A Study on a Performance Progress of Direct-Conversion Receiver as removing DC offset. (Direct-Conversion 수신기에서 DC offset 제거에 따른 성능 개선에 관한 연구)

  • 김철성;박성진;조형래
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2000.10a
    • /
    • pp.162-165
    • /
    • 2000
  • This paper presents the analysis of the effect which DC offsets produced in the direct-conversion receiver system under the AWGN circumstance exercise on the system performance. Then, as a method which improve the system performance by removing the DC offsets, we proposed the plan which can copes with the time variant DC offsets occurrences according to taking accumulation and average through the loop signals which DC offsets are produced.

  • PDF

Phase Offset Correction using Early-Late Phase Compensation in Direct Conversion Receiver (직접 변환 수신기에서 Early-Late 위상 보상기를 사용한 위상 오차 보정)

  • Kim Young-Wan
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.9 no.3
    • /
    • pp.638-646
    • /
    • 2005
  • In recent wireless communications, direct conversion transceiver or If sampling SDR-based receivers have being designed as an alternative to conventional transceiver topologies. In direct conversion receiver a.chitectu.e, the 1.equency/phase offset between the RF input signal and the local oscillator signal is a major impairment factor even though the conventional AFC/APC compensates the service deterioration due to the offset. To rover the limited tracking range of the conventional method and effectively aid compensation scheme in terms of I/Q channel imbalances, the frequency/phase offset compensation in RF-front end signal stage is proposed in this paper. In RF-front end, the varying phase offset besides the fixed large frequency/phase offset are corrected by using early-late phase compensator. A more simple frequency and phase tacking function in digital signal processing stage of direct conversion receiver is effectively available by an ingenious frequency/phase offset tracking method in RF front-end stage.

Design and Implementation of QPSK Receiver Using Six-Port Direct Conversion (Six-Port 직접 변환을 이용한 QPSK 수신기 설계 및 제작)

  • Yang, Woo-Jin;Kim, Young-Wan
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.18 no.1 s.116
    • /
    • pp.15-23
    • /
    • 2007
  • A simple six-port direct conversion QPSK receiver which is made up of a six-port phase correlator, a signal power detector, and I/Q channel signal de-modulator is designed and implemented in this paper. The output phase signals of six-port phase correlator are also analysed. On the basis of $90^{\circ}C$ phase relation among the six-port phase correlator output signals, the QPSK de-modulation circuit is designed by a simple circuit. The six-port phase correlator is made up of $90^{\circ}$ hybrid branch line and power detector. The six-port phase correlator, which is designed in frequency range of 11.7 to 12.0 GHz, gets the phase error characteristics less than $5^{\circ}$. By considering matching network and amplitude balance in the designed fiequency range, the designed six-port direct conversion QPSK receiver demodulates the I and Q signals with performance less than $5^{\circ}$ phase error.

Design of lumped six-port phase correlator and performance of lumped direct conversion receiver (집중 소자형 6단자 위상 상관기 설계와 집중 소자형 직접변환 수신 성능)

  • Yu, Jae-Du;Kim, Young-Wan
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.14 no.5
    • /
    • pp.1071-1077
    • /
    • 2010
  • The six-port phase correlator using lumped elements was designed and fabricated in this paper, also the receiving performance of L-band direct conversion receiver using lumped six-port phase correlator element was analyzed. The proposed L-band lumped six-port phase correlator element was composed of a resistive power divider and the twist-wire coaxial cables. The proposed lumped six-port structure provides the small-sized configuration and wide-band characteristics. The performance of the L-band lumped direct conversion receiver structure was measured under the conditions of 1.69 GHz frequency for LO-CW signal and RF-QPSK signal, which are input signals for the lumped six-port phase correlator element. The direct conversion receiving structure using the proposed lumped six-port phase correlator element can recovered the good digital I/Q signal.

The Effects of DC Offset on the Performance of Direct-Conversion Mobile Receiver in WCDMA System (WCDMA 시스템 직접변환 단말기 수신기에서 DC 오프셋에 의한 성능영향)

  • 이일규
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.15 no.7
    • /
    • pp.730-735
    • /
    • 2004
  • This paper describes what brings about DC offset and the impact or the DC offset on the performance or direct-conversion mobile receiver in WCDMA system. The performance degradation of $E_{b}/N_{o}$ due to the DC offset is presented through simulation result. Direct-conversion RF Transceiver which has the function of DC offset control is implemented and then applied to the WCDMA test-bed for the performance evaluation. The receiver performance degradation of $E_{c}/I_{o}$ is evaluated and analyzed by varying DC offset value. The practical test showed the minimum requirement of DC offset value to meet system performance.

Mixer using the direct-conversion method (직접 변환 방식을 이용한 주파수 혼합기)

  • Lim Chae-sung;Kim Sung-woo;Choi Hyek-Hwan;Lee Myoung-kyo;Kwon Tae-ha
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.9 no.6
    • /
    • pp.1269-1276
    • /
    • 2005
  • In this paper, Mixer using the direct-conversion method intended to use in front-end of a RF receiver is designed. The direct conversion Mixer is an alternative wireless receiver architecture to the well-established superheterodyne, particularly for high integration, low power, and low cost. It operates at 2.4GHz band, and is designed and simulated with a 0.35um CMOS technology and HSPICE simulator. Layout is implemented with a Mentor IC Station. The 2.4GHz CMOS Mixer employs a modified single-balanced Gilbert Cell with additional MOSFET in the output stages to improve IIP2, which is a standard of linearity in direct conversion receiver. Additional coversion-stages's transconductances are controlled by each MOSFET's physical properties. The HSPICE simulation results show that the 2.4GHz CMOS Mixer has voltage gam of 29dB, IIP2 of 63dBm, respectively. The Mixer also draws 3.5mA from a 3.3V supply.

Low IF Resistive FET Mixer for the 4-Ch DBF Receiver with LNA (LNA를 포함하는 4채널 DBF 수신기용 Low IF Resistive FET 믹서)

  • 민경식;고지원;박진생
    • Proceedings of the Korea Electromagnetic Engineering Society Conference
    • /
    • 2002.11a
    • /
    • pp.16-20
    • /
    • 2002
  • This paper describes the resistive FET mixer with low IF for the 4-Ch DBF(Digital Beam Forming) receiver with LNA(Low Noise Amplifier). This DBF receiver based on the direct conversion method is generally suitable for high-speed wireless mobile communications. A radio frequency(RF), a local oscillator(LO) and an intermediate frequency(IF) considered in this research are 2.09 ㎓, 2.08 ㎓ and 10㎒, respectively. The RF input power, LO input power and Vgs are used -10㏈m, 6㏈m and -0.4 V, respectively. In the 4-Ch resistive FET mixer with LNA, the measured IF and harmonic components of 10㎒, 20㎒, 2.09㎓ and 4.17㎓ are about -12.5 ㏈m, -57㏈m, -40㏈m and -54㏈m, respectively. The IF output power observed at each channel of 10㎒ is about -12.5㏈m and it is higher 27.5 ㏈m than the maximum harmonic component of 2.09㎓. Each IF output spectrum of the 4-Ch is observed almost same value and it shows a good agreement with the prediction.

  • PDF

A Fast and Precise Blind I/Q Mismatch Compensation for Image Rejection in Direct-Conversion Receiver

  • Kim, Suna;Yoon, Dae-Young;Park, Hyung Chul;Yoon, Giwan;Lee, Sang-Gug
    • ETRI Journal
    • /
    • v.36 no.1
    • /
    • pp.12-21
    • /
    • 2014
  • In this paper, we propose a new digital blind in-phase/quadrature-phase (I/Q) mismatch compensation technique for image rejection in a direct-conversion receiver (DCR). The proposed image-rejection circuit adopts DC offset cancellation and a sign-sign least mean squares (LMS) algorithm with a unique step size adaptation both for a fast and precise I/Q mismatch estimation. In addition, several performance-optimizing design considerations related to accuracy, speed, and hardware simplicity are discussed. The implementation of the proposed circuit in an FPGA results in an image-rejection ratio (IRR) of 65 dB, which is the best performance with modulated signals, along with an adaptation time of 0.9 seconds, which is a tenfold increase in the compensation speed as compared to previously reported circuits. The proposed technique will be a promising solution in the area of image rejection to increase both the speed and accuracy of future DCRs.

I/Q Gain and Phase Imbalances Compensation Algorithm by using Variable Step-size Adaptive Loops at Direct Conversion Receiver (가변 스텝 적응적 루프를 이용한 직접 변환 방식 수신기에서의 이득 및 위상 불일치 보상 알고리즘)

  • 송윤정;나성웅
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.14 no.10
    • /
    • pp.1104-1111
    • /
    • 2003
  • The paper presents an algorithm for the compensation of gain and phase imbalances to exist between I-phase and Q-phase signal at direct conversion receiver. We propose a gain and phase imbalances blind equalization compensation algorithm by using variable step-size adaptive loop at direct conversion receiver. The blind equalization schemes have trade-off between convergence speed and jitter effect for the compensation of gain and phase imbalance. We propose the variable step-size adaptive loop method, which varies the loop coefficients according to errors, for recovering these problem. By using variable step-size adaptive loops, we propose to speed up the convergence process and reduce the jitter effect and simulation results show that the algorithm compensates signal loss and speeds up convergence time.