• Title/Summary/Keyword: Direct Control Scheme

Search Result 349, Processing Time 0.022 seconds

Direct Adaptive Control Scheme with Integral Action for Nonminimum Phase Systems (비최소 위상 시스템에 대한 적분기를 갖는 직접 적응제어)

  • Kim, Jong-Hwan;Choi, Keh-Kun
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.23 no.4
    • /
    • pp.445-449
    • /
    • 1986
  • This paper presents a direct adaptive control scheme for nonminimum phase systems of which controller parameters are estimated from the least-squares algorithm, and some additional auxiliadry parameters are obtianed from the proposed polynomial identity equation. Integral action is incorporated into the adaptive controller to eliminate the steady-state error, and to satisfy a condition of the unique solution for the polynomial identity as well.

  • PDF

A Novel Direct Torque Control of Induction Machines based on Stator Flux (고정자 자속을 기반으로 한 유도전동기의 새로운 직접 토크 제어)

  • 박준현;정종진;최종우;김흥근;노의철;부경대학교전기제어계측공학부조교수
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.7 no.3
    • /
    • pp.297-302
    • /
    • 2002
  • The direct torque control(DTC) of induction machines has the advantages of a simple control scheme and a very quick and robust torque response and its application is extended in the traction field. However, some drawbacks of the conventional DTC strategy using a hysteresis controller are the relatively large torque ripple in the steady state and the variation of switching frequency according to the amplitude of hysteresis bands and the motor operating conditions. In this paper, a navel direct t()roue control scheme of induction machines based on stator flux control and Space Vector Modulation Is proposed to acquire the advantage of a fixed switching period and the minimization of the torque and stator current ripple in a wide speed range. The effect of proposed method has been proven by simulations and experiments.

Direct Adaptive Pole-Placement and Stability of Discrete-time Non-minimum Phase Systems (이산시간 비 최소현상 시스템의 직지 적응 극배룰 및 안전팡에 관한 연구)

  • 최종호;최진영
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.33 no.5
    • /
    • pp.193-199
    • /
    • 1984
  • This paper presents a direct adaptive pole placement control scheme which is applicable to discretetime non-minimum phase systems. It is proved that by this scheme the poles can be placed at the desired locations and the overall state vector of the system is uniformly bounded if the reference input is sufficiently rich, and also proved that in case of insufficiently rich reference input the overall system can still be stabilized though the poles may not be placed exactly at the desired locations. The effectiveness of this scheme is verified by digital computer simulations.

  • PDF

Direct Thrust Control of Permanent Magnet Type Linear Synchronous Motor by using Digital Signal Processor (DSP를 이용한 영구 자석형 선형 동기전동기의 직접 추력 제어)

  • U, Gyeong-Il;Kim, Deok-Jin;Gwon, Byeong-Il
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.49 no.8
    • /
    • pp.514-521
    • /
    • 2000
  • This paper presents a direct thrust control scheme for permanent magnet linear synchronous motor(PMLSM) by using digital signal processor(DSP). And a simulation method for the direct thrust control of a permanent magnet linear synchronous motor using the equivalent circuit is presented. The detent force that was obtained by cubic spline method is considered in the simulation. Thrust correction coefficient is utilized to estimate actual thrust on the direct thrust control, which considers the longitudinal end effect due to the finite core length of the permanent magnet linear synchronous motor. The motor self inductance, the initial flux linkage by the permanent magnet is calculated in advance by the finite element analysis, and then the direct control simulation is carried out. As the results, thrust, current and speed are shwon.

  • PDF

A New Sliding Mode Control for Set-point Regulation of Second Order LTI Nonminimum Phase Systems (이차 선형 시불변 비최소 위상 시스템의 설정값 조정을 위한 새로운 슬라이딩 모드 제어)

  • Lee, Ha-Joon;Park, Cheol-Hoon
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.13 no.10
    • /
    • pp.990-999
    • /
    • 2007
  • We deal with second order NMP(Non-Minimum Phase) systems which are difficult to control with conventional methods because of their inherent characteristics of undershoot. In such systems, reducing the undesirable undershoot phenomenon makes the response time of the systems much longer. Moreover, it is impossible to control the magnitude of undershoot in a direct way and to predict the response time. In this paper, we propose a novel two sliding mode control scheme which is capable of determining the magnitude of undershoot and thus the response time of NMP systems a priori. To do this, we introduce two sliding lines which are in charge of control in turn. One is used to stabilize the system and achieve asymptotic regulation eventually like the conventional sliding mode methods and the other to stably control the magnitude of undershoot from the beginning of control until the state meets the first sliding line. This control scheme will be proved to have an asymptotic regulation property. The computer simulation shows that the proposed control scheme is very effective and suitable for controlling the second order NMP system because it can decide the magnitude of undershoot in a direct and stable way and reduce the response time compared with the conventional ones.

A Scheme of EDTC Control using an Induction Motor Three-Level Voltage Source Inverter for Electric Vehicles

  • Zaimeddine, R.;Berkouk, E.M.;Refoufi, L.
    • Journal of Electrical Engineering and Technology
    • /
    • v.2 no.4
    • /
    • pp.505-512
    • /
    • 2007
  • The object of this paper is to study a new control structure for sensorless induction machines dedicated to electrical drives using a three-level voltage source inverter VSI-NPC. The amplitude and the rotating speed of the flux vector can be controlled freely. The scheme investigated is an Enhanced direct torque control "EDTC" for electric vehicle propulsion. The considered application imposes some constraints which are achieved in EDTC control (fast torque response, optimal switching logic, torque control at zero speed, and large speed control. The results obtained for an induction motor indicate superior performance over the FOC type without need for any mechanical sensor.

An Improvement Scheme of Direct Load Control Program for Electric Power Demand Management (합리적 전력수요관리를 위한 직접부하제어 사업의 개선 방안)

  • Kim, Kyu-Ho;Choi, Seung-Kil;Song, Kyung-Bin
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.21 no.8
    • /
    • pp.81-86
    • /
    • 2007
  • This paper proposes the scheme to improve the current direct load control(DLC) program by inspecting the problems of the DLC program. In order to increase the number of the customers participating DLC program, a reduction of the base incentive and an increase of the direct load control incentive are suggested based on the interruption cost of electric power considering the characteristics of load types and the introduction of demand side bidding is recommended. Secondly, the standards of power system operations is required to control DLC program efficiently for the penalty, interruption times, the number of interrupting loads, notice time for the load interruption and the periods of the DLC program contract.

Sensorless Speed Control of Induction Motor by Direct Torque Control with Numerical Model (수식모델의 직접토크제어에 의한 유도전동기의 센서리스 속도제어)

  • Yoon, Kyoung-Kuk;Kim, Sung-Hwan
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.36 no.6
    • /
    • pp.830-836
    • /
    • 2012
  • Various control algorithms have been proposed for the speed-sensorless control for an induction motor. These control schemes are mainly based on the speed feedback with the flux and speed estimations. This paper proposes another method for the speed-sensorless control for an induction motor. The proposed scheme is based on the torque and flux compensation without speed estimations, in which the same controlled stator voltage is applied to both the induction motor and the numerical model so that the differences between torques and fluxes of the model and the induction motor may be compelled to give access to zero. The results of experiment show the effectiveness of the scheme.

Direct Torque Control Of Induction Motor for Constant Switching Frequency (일정 스위칭 주파수를 위한 유도전동기의 직접토오크 제어)

  • Choi, Youn-Ok;Chung, Byung-Ho;Lim, Byung-Ok;Jeong, Sam-Young;Seo, Jin-Yeon;Cho, Geum-Bae;Baek, Hyung-Lae
    • Proceedings of the KIEE Conference
    • /
    • 2002.07b
    • /
    • pp.1152-1154
    • /
    • 2002
  • In this paper, a direct torque control method of an induction motor is proposed which enables constant switching frequency. The switching strategy of a conventional direct torque control scheme which is based on hysteresis comparator results in a variable switching frequency which depends on the speed, flux, stator voltage and hysteresis band of the comparator. This paper proposes a new switching strategy which determine the effective switching time on each switching period by comparing the ascending and descending torque slopes. The simulation results are presented to verify this proposed scheme.

  • PDF

Design of adaptive controllers for the boiler system (보일러를 위한 적응 제어기 설계)

  • 박태건;류지수;이기상
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.337-340
    • /
    • 1997
  • In this paper we propose direct and indirect adaptive controllers for a nonlinear multivariable steam generating unit(200MW). In the direct adaptive scheme the estimation of the controller parameter are achieved from tracking error, while in the indirect approach the unknown parameter of the boiler system is estimated by the Hopfield network-based identifier. The performance of two proposed adaptive controllers is shown through simulations.

  • PDF