• Title/Summary/Keyword: Direct Chopper

Search Result 16, Processing Time 0.019 seconds

A Study on Bidirectional Boost-Buck Chopper Type AC Voltage Regulator

  • Isnanto, Isnanto;Choi, Woo-Seok;Park, Sung-Jun
    • Proceedings of the KIPE Conference
    • /
    • 2012.11a
    • /
    • pp.193-194
    • /
    • 2012
  • The bidirectional boost-buck chopper type AC voltage regulator is presented in this paper. The main characteristic of the AC chopper is the fact that it generates an output AC voltage larger or lower than the input AC one, depending of the instantaneous duty-cycle. Boost-buck chopper type AC voltage regulator, derived from the DC chopper modulated method, is a kind of direct AC-AC voltage converter and has many advantages: such as fast response speed, low harmonics and high power factor. It adopts high switching frequency AC chopper technique and can do wide range step less AC voltage regulation.

  • PDF

DC Voltage Build-Up Suppression Scheme of HVDC System for Offshore Wind Farm Connection using Chopper Resistor and de-loading (초퍼저항 및 de-loading 협조제어를 통한 해상풍력 연계용 HVDC시스템 DC전압 상승 억제 방안)

  • Lee, Hyeong-Jin;Kang, Byoung-Wook;Kim, Jae-Chul
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.66 no.5
    • /
    • pp.750-756
    • /
    • 2017
  • This paper presents a method for DC voltage control of HVDC system connection of offshore wind farms. In the event of fault in AC grid, HVDC system need to meet LVRT regulations. When HVDC system meet LVRT regulation, unbalance is caused between power input and power output for DC link. Therefore, LVRT regulation lead to DC voltage increase of HVDC system. To control the DC voltage increase, the chopper resistor can be suggested. In this paper, DC voltage suppression is proposed using chopper resistor and de-loading. The effectiveness of the chopper resistor was verified using PSCAD/EMTDC.

The study of a chopper-type transistorized d.c. amplifier circuit (교류변환형 트란지스터식 직류증폭회로에 관한 연구)

  • 한만춘;최창준
    • 전기의세계
    • /
    • v.18 no.5
    • /
    • pp.12-19
    • /
    • 1969
  • The sensitivity of transistorized d.c. amplifiers is mainly limited by drift at operating point caused by ambient temperature changes. A chopper-type transistorized amplifier is necessary to obtain a high sensitivity without recourse to drift compensation which requires the adjustment of several balancing controls. A chopper-stabilized system consisting of an electro-mechanical chopper for input and output and a high-gain a.c. amplifier is designed and analyzed. The gain of the a.c. amplifier, expressed as the ratio of voltages, is larger than 80db in the band of 50C/S - 100KC/S. The complete system gives an open-loop gain of 68db at direct current. The offset voltage is 20.mu.V referred in input and the voltage drift at the input is less than 10.mu.V/hr at 25.deg.C. This type of amplifier would be useful for the high-gain transistorized d.c. amplifier for analog computers. Also, due to the high input impedance, it is suitable for amplification of signals from wide range of source impedances.

  • PDF

A Study on the Multi-resonant characteristics of Half-wave Resonant Type Multi-output ZVS HB Converter for the Plasma Display Panel (PDP용 반파 공진형 멀티출력 하프브리지 컨버터의 다중 공진특성에 관한 연구)

  • Lee, Jae-In;Son, Ho-In
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.55 no.6
    • /
    • pp.314-324
    • /
    • 2006
  • In recent years, having the advantages of being small, low in cost and high in efficiency, Half-wave resonant type, (having only one output diode), is used in ZVS Half-Bridge DC/DC converter. This paper presents the operation mode by multi-resonant factors in the Half-wave type multi-resonant converter with direct Buck chopper circuit operated in discontinuous current mode. To study the characteristics of a multi-resonant operation in steady-state, the characteristic impedances in each mode and safe operation-region(S.O.R) are reported. Computer simulation and experimental data are also riven to verify the theoretical results.

A Novel Boost DC-DC Converter using High Frequency Coupled Inductor Series Resonant ZCS-PFM Chopper Control Method (고주파 결합 인덕터 직렬 공진형 ZCS-PFM 초퍼 제어 방식을 이용한 새로운 승압형 DC-DC 컨버터)

  • Kim, Hong-Shin;Heo, Young-Hwan;Mun, Sang-Pil;Park, Han-Seok
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.66 no.2
    • /
    • pp.63-68
    • /
    • 2017
  • This paper proposes a new non-isolated DC conversion circuit topology of the voltage source coupled inductor series resonant high-frequency PFM controlled boost chopper type DC-DC power converter using two in one IGBT power module, which can efficiently operate under a principle of zero current soft switching for wide output regulation voltage setting ranges and wide fluctuation of the input DC side voltage as well as the load variation ranges. Its steady state operating principle and the output voltage regulation characteristics in the open-loop-based output voltage control scheme without PI controller loop are described and evaluated from theoretical and experimented viewpoints. Finally, in this paper the computer-aided simulation steady-state analysis and the experimental results are presented in order to prove the effectiveness and the validity of voltage regulation characteristics of the proposed series resonant zero current soft switching boost chopper type DC-DC power converter circuit using IGBTs which is based on simple pulse frequency modulation strategy more than, 20kHz.

Active-Clamp AC-DC Converter with Direct Power Conversion (직접전력변환 방식을 이용한 능동 클램프 AC-DC 컨버터)

  • Cho, Yong-Won;Kwon, Bong-Hwan
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.17 no.3
    • /
    • pp.230-237
    • /
    • 2012
  • This paper proposes an active-clamp ac-dc converter with direct power conversion that has a simple structure and achieves high efficiency. The proposed converter is derived by integrating the step-down ac chopper and the output-voltage doubler. The proposed converter provides direct ac-dc conversion and dc output voltage without using any full-bridge diode rectifier. The step-down ac chopper using an active-clamp mechanism serves to clamp the voltage spike across the main switches and provides zero-voltage turn-on switching. The resonant-current path formed by the leakage inductance of the transformer and the resonant capacitor of the output-voltage doubler achieves the zero-current turn-off switching of the output diodes. The operation principle of the converter is analyzed and verified. A 500W prototype is implemented to show the performance of the proposed converter. The prototype provides maximum efficiency of 95.1% at the full load.

Utility Interactive Photovoltaic Generation System Using Discontinuous Mode Buck-Boost Chopper (불연속모드 승강압초퍼를 이용한 계통연계형 태양광발전 시스템)

  • 김영철;이현우;서기영
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.4 no.4
    • /
    • pp.325-331
    • /
    • 1999
  • In a utility interactive photovoltaic generation system. a PWM inverter is used for the connection between the p photovoltaic arrays and the utility. The dc current becomes pulsated when the conventional inverter system operates i in the continuous current mode and de current pulsation causes the distortion of the accurrent waveform. This paper p presents the reduced pulsation of de input current by operating the inverter with buck-boost chopper in the d discontinuous conduction mode. The dc current which contains harmonic component is analyzed by means of s separating into two terms of a ripple component and a direct component. The constant dc current without p pulsation is supplied from photovoltaic array to the inverter. The proposed inverter system provides a sinusoidal ac c current for domestic loads and the utility line with unity power factor.

  • PDF

Utility interactive PV system using buck-boost chopper and partial resonant Inverter (승강압초퍼와 부부공진 인버터를 이용한 계통연계형 태양광 발전시스템)

  • 고강훈;이현우;김영철;정명웅;홍두성
    • Proceedings of the KIPE Conference
    • /
    • 1999.07a
    • /
    • pp.278-281
    • /
    • 1999
  • In a utility interactive photovoltaic system, a PWM inverter is used for the connection between the photovoltaic arrays and the utility. The DC current becomes pulsated causes the distortion of the AC current waveform. This paper presents the reduced pulsation of DC input current by operating the inverter with buck-boost chopper in the discontinuous conduction mode. The DC current with contains harmonics component is analyzed by means of separating into two terms of a ripple component and a direct component. The constant DC current without pulsation is supplied from photovoltaic array to the inverter. The proposed inverter system provide a sinusoidal AC current for domestic loads and the utility line with unity power factor.

  • PDF

A Direct Series Resonant AC-DC Converter for Large Scale LED lamp (대형 LED lamp용 직렬 공진형 Direct AC-DC 컨버터)

  • LEE, Sung-Ho;Park, Chun-Yoon;Kwon, Bong-Hwan
    • Proceedings of the KIPE Conference
    • /
    • 2011.07a
    • /
    • pp.350-351
    • /
    • 2011
  • 본 논문에서는 대형 LED lamp용 직렬 공진형 direct ac-dc 컨버터를 제안하였다. 교류상용전원을 통한 LED lamp에 전원 공급 시, 입력전류의 왜곡을 방지하기 위해, PFC ac-dc 컨버터가 적용된다. 하지만 PFC 컨버터의 특성에 따라 회로의 복잡도 및 수용 전력의 한계가 존재한다. 제안된 컨버터는 기존의 전력변환 방식과 다른 형태로서, 교류 쵸퍼(AC chopper)와 직렬공진회로가 혼합된 구성을 가지며, 교류 쵸퍼의 직접 전력 변환을 통해 PFC 회로 구성없이도 고 역률을 획득할 수 있으며, 직렬공진회로를 통하여 제안된 컨버터의 모든 스위치의 영전압 스위칭(ZVS) 턴-온동작을 통해 손실저감을 도모한다. 본 논문에서는 제안된 컨버터의 동작원리를 간단히 설명하고, 250W의 프로토 타입을 통하여 제안된 컨버터의 우수성을 검증한다.

  • PDF

Improvement of the amplification gain for a propulsion drives of an electric vehicle with sensor voltage and mechanical speed control

  • Negadi, Karim;Boudiaf, Mohamed;Araria, Rabah;Hadji, Lazreg
    • Smart Structures and Systems
    • /
    • v.29 no.5
    • /
    • pp.661-675
    • /
    • 2022
  • In this paper, an electric vehicle drives with efficient control and low cost hardware using four quadrant DC converter with Permanent Magnet Direct Current (PMDC) motor fed by DC boost converter is presented. The main idea of this work is to improve the energy efficiency of the conversion chain of an electric vehicle by inserting a boost converter between the battery and the four quadrant-DC motor chopper assembly. Consequently, this method makes it possible to maintain the amplification gain of the 4 quadrant chopper constant regardless of the battery voltage drop and even in the presence of a fault in the battery. One of the most important control problems is control under heavy uncertainty conditions. The higher order sliding mode control technique is introduced for the adjustment of DC bus voltage and mechanical motor speed. To implement the proposed approach in the automotive field, experimental tests were carried out. The performances obtained show the usefulness of this system for a better energy management of an electric vehicle and an ideal control under different operating conditions and constraints, mostly at nominal operation, in the presence of a load torque, when reversing the direction of rotation of the motor speed and even in case of battery chamber failure. The whole system has been tested experimentally and its performance has been analyzed.