• Title/Summary/Keyword: Direct Ac-Ac Converter

Search Result 100, Processing Time 0.023 seconds

The Comparison of Operating Characteristics of SVC and STATCOM for Compensating the Reactive Power in the Jeju Power System (제주계통의 무효전력보상을 위한 SVC와 STATCOM의 운전특성 비교)

  • LEE, SEUNGMIN;Kim, Eel-Hwan;Kim, Ho Min;Oh, Sung-Bo;LEE, DOHEON
    • Journal of the Korean Solar Energy Society
    • /
    • v.35 no.3
    • /
    • pp.49-56
    • /
    • 2015
  • This paper presents a comparative operating characteristics of static var compensator(SVC) and static synchronous compensator(STATCOM) for compensating the reactive power in the Jeju power system. There are two kinds of reactive power compensating systems, which are active and passive system in the applications of the line commutated converter type high voltage direct current (LCC-HVDC). In the Jeju power system, two STATCOMs as active compensating system have been operating. Even though STATCOM has good performance compared with SVC, economical efficiency of former system is not good to the latter system. So, it is necessary to examine the performance and economical efficiency depend on the intention before appling the system. To compare the operating characteristics of two systems in the Jeju power system, simulations have been carried out for case studies that both of the HVDC system have transient state by using PSCAD/EMTDC program.

Development of the High Input Voltage Self-Power for LVDC

  • Kim, Kuk-Hyeon;Kim, Soo-Yeon;Choi, Eun-Kyung;HwangBo, Chan;Park, Seong-Mi;Park, Sung-Jun
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.24 no.4_1
    • /
    • pp.387-395
    • /
    • 2021
  • Distributed resources such as renewable energy sources and ESS are connected to the low voltage direct current(LVDC) distribution network through the power conversion system(PCS). Control power is required for the operation of the PCS. In general, controller power is supplied from AC power or DC power through switch mode power supply(SMPS). However, the conventional SMPS has a low input voltage, so development and research on high input voltage self-power suitable for LVDC is insufficient. In this paper, to develop Self-Power that can be used for LVDC, the characteristics of the conventional topology are analyzed, and a series-input single-output flyback converter using a flux-sharing transformer for high voltage is designed. The high input voltage Self-Power was designed in the DCM(discontinuous current mode) to reduce the switching loss and solve the problem of current dissipation. In addition, since it operates even at low input voltage, it can be applied to many applications as well as LVDC. The validity of the proposed high input voltage self-power is verified through experiments.

The Development of the ±80kV 60MW HVDC System in Korea

  • Park, Kyoung-Ho;Baek, Seung-Taek;Chung, Yong-Ho;Jang, Gil-Soo
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.2
    • /
    • pp.594-600
    • /
    • 2017
  • HVDC transmission systems can be configured in many ways to take into account cost, flexibility and operational requirements. [1] For long-distance transmission, HVDC systems may be less expensive and suffer lower electrical losses. For underwater power cables, HVDC avoids the heavy currents required to charge and discharge the cable capacitance of each cycle. For shorter distances, the higher cost of DC conversion equipment compared to an AC system may still be warranted, due to other benefits of direct current links. HVDC allows power transmission between unsynchronized AC transmission systems. Since the power flow through an HVDC link can be controlled independently of the phase angle between the source and the load, it can stabilize a network against disturbances due to rapid changes in power. HVDC also allows the transfer of power between grid systems running at different frequencies, such as 50 Hz and 60 Hz. This improves the stability and economy of each grid, by allowing the exchange of power between incompatible networks. This paper proposed to establish Korean HVDC technology through a cooperative agreement between KEPCO and LSIS in 2010. During the first stage (2012), a design of the ${\pm}80kV$ 60MW HVDC bipole system was created by both KEPCO and LSIS. The HVDC system was constructed and an operation test was completed in December 2012. During the second stage, the pole#2 system was fully replaced with components that LSIS had recently developed. LSIS also successfully completed the operation test. (2014.3)

Electronic Ballast Design for Power Factor Improvement and Harmonic Reduction (역률개선 및 고조파 저감을 위한 전자식 안정기 설계)

  • Lee, Chung-Sik;Cho, Moon-Taek;Na, Seung-Kwon
    • Journal of Advanced Navigation Technology
    • /
    • v.18 no.5
    • /
    • pp.483-489
    • /
    • 2014
  • Proposed electronic ballast circuit for harmonic reduction includes adding lossless snubber circuit to DC-DC converter. To get inverter for changing DC-AC, a lamp has been changed to equivalence resistance in the standard lamp voltage and current data, also inverter circuit has been interpreted by being changed to R, L, C equivalence circuit. Using converted equivalent circuit, the most suitable circuit constant which can satisfy the characteristics of fluorescent lamps has been decided on and finally designed. It could not only eliminate distortion waveform from pulsation frequency in inverter direct side current but also reduce considerably pulsation rate and switching loss by making input current of inverter discontinuous. The validity for the results of this study has been verified through the experiment to measure harmonic occurrence after applying a newly-manufactured product of electronic ballast to 40 W line tube style fluorescent lamps.

A Study on Economic Evaluation Modeling of MVDC Distribution System for Hosting Capacity of PV System (태양광전원 수용을 위한 MVDC 배전망의 경제성평가 모델링에 관한 연구)

  • Lee, Hu-Dong;Kim, Ki-Young;Kim, Mi-Sung;Rho, Dae-Seok
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.3
    • /
    • pp.1-12
    • /
    • 2021
  • Technologies for an MVDC(medium voltage direct current) distribution system are being considered as an effective alternative to overcome the interconnection delay issues of PV systems. However, the implementation of a DC distribution system might lead to economic problems because of the development of DC devices. Therefore, this paper deals with the scale of a PV plant based on its capacity and proposes hosting-capacity models for PV systems to establish a network to evaluate the feasibility of an MVDC distribution system. The proposed models can be classified as AC and DC distribution systems by the power-supply method. PV systems with hundreds of MW, dozens of MW, and a few MW can be categorized as large-scale, medium-scale, and small-scale models, respectively. This paper also performed modeling for an economic evaluation of MVDC distribution system by considering both the cost of AC and DC network construction, converter replacement, operation, etc. The profit was composed of the SMP and REC rate of a PV plant. A simulation for economic evaluation was done for the MVDC distribution system using the present worth and equal-principal costs repayment method. The results confirmed that the proposed model is a useful tool to evaluate economic issues of a DC distribution system.

Improvement of LCC-HVDC Input-Output Characteristics using a VSC-MMC Structure

  • Kim, Soo-Yeon;Park, Seong-Mi;Park, Sung-Jun;Kim, Chun-Sung
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.24 no.4_1
    • /
    • pp.377-385
    • /
    • 2021
  • High voltage direct current(HVDC) systems has been an alternative method of a power transmission to replace high voltage alternate current(HVAC), which is a traditional AC transmission method. Due to technical limitations, Line commutate converter HVDC(LCC-HVDC) was mainly used. However, result from many structural problems of LCC-HVDC, the voltage source converter HVDC(VSC-HVDC) are studied and applied recently. In this paper, after analyzing the reactive power and output voltage ripple, which are the main problems of LCC-HVDC, the characteristics of each HVDC are summarized. Based on this result, a new LCC-HVDC structure is proposed by combining LCC-HVDC with the MMC structure, which is a representative VSC-HVDC topology. The proposed structure generates lower reactive power than the conventional method, and greatly reduces the 12th harmonic, a major component of output voltage ripple. In addition, it can be easily applied to the already installed LCC-HVDC. When the proposed method is applied, the control of the reactive power compensator becomes unnecessary, and there is an advantage that the cut-off frequency of the output DC filter can be designed smaller. The validity of the proposed LCC-HVDC is verified through simulation and experiments.

Control Strategy of MMC-HVDC under Unbalanced Grid Voltage Conditions

  • Zhang, Jianpo;Zhao, Chengyong
    • Journal of Power Electronics
    • /
    • v.15 no.6
    • /
    • pp.1499-1507
    • /
    • 2015
  • High voltage direct current transmission based on modular multilevel converter (MMC-HVDC) is one of the most promising power transmission technologies. In this study, the mathematical characteristics of MMC-HVDC are analyzed in a synchronous rotational reference frame. A hybrid current vector controller based on proportional integer plus resonant is used to uniformly control the DC and double-base frequency AC currents under unbalanced grid voltage conditions. A corresponding voltage dependent current order limiter is then designed to solve the overcurrent problems that may occur. Moreover, the circulating current sequence components are thoroughly examined and controlled using a developed circulating current suppressor. Simulation results verify the correctness and effectiveness of the proposed control schemes.

±80kV 60MW HVDC Operational Strategy in Abnormal State (비상상태에서의 제주 ±80kV 60MW HVDC 운전 방안 연구)

  • Yoon, Jong-Su;Seo, Bo-Hyeok
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.61 no.5
    • /
    • pp.664-668
    • /
    • 2012
  • This paper presents the operation strategy of KEPCO(Korea Electric Power COporation) ${\pm}80kV$ 60MW Bipole HVDC system that will be applied between Guemak C/S(converter station) and Hanlim C/S in Jeju island. Unlike intertie HVDC system, this system is located in AC power grid inside. Therefore, the enhancement of system security related with line flow and bus voltages can be major operation strategy. In this paper, in particular, the optimal operation algorithm in the abnormal(not steady state) power system is presented and simulated.

System-Level Vulnerability Analysis for Commutation Failure Mitigation in Multi-infeed HVDC Systems

  • Yoon, Minhan;Jang, Gilsoo
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.3
    • /
    • pp.1052-1059
    • /
    • 2018
  • This paper deals with commutation failure of the line-commutated converter high voltage direct current (LCC HVDC) system caused by a three phase fault in the ac power system. An analytic calculation method is proposed to estimate the maximum permissible voltage drop at the LCC HVDC station on various operating point and to assess the area of vulnerability for commutation failure (AOV-CF) in the power system based on the residual phase voltage equation. The concept is extended to multi-infeed HVDC power system as the area of severity for simultaneous commutation failure (AOS-CF). In addition, this paper presents the implementation of a shunt compensator applying to the proposed method. An analysis and simulation have been performed with the IEEE 57 bus sample power system and the Jeju island power system in Korea.

Static Stability Analysis Using Voltage Source Converter HVDC (전압형 컨버터 HVDC를 이용한 정적 안정도 해석)

  • Chae, Byung-Ha;Oh, Sae-Shung;Jang, Gil-Soo;Lee, Byung-Jun;Han, Byung-Mun;Cha, Jun-Min;Kim, Chan-Ki
    • Proceedings of the KIEE Conference
    • /
    • 2004.11b
    • /
    • pp.66-68
    • /
    • 2004
  • The current source HVDC using thyristor valves requires the reactive power compensator, the increasement of short circuit ratio(SCR) by AC source, and the harmonic filter in power transmission. The voltage source HVDC that controls active power and reactive power independently can minimize the requirements and also can be used as a reactive power source without additional reactive power compensators. In this paper, the solution of supplying active power using direct current transmission and compensating additional reactive power at the heavy load zone in metropolitan area is proposed and verified by simulations.

  • PDF