• Title/Summary/Keyword: Dipole patch antenna

Search Result 29, Processing Time 0.023 seconds

A study on the Properties of RF-DC Conversion Efficiency for the Dual-Polarization (이중편파 정류안테나의 RF-DC 변환효율 특성 분석)

  • 유동기;박양하;김관호;이영철
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.25 no.3A
    • /
    • pp.435-442
    • /
    • 2000
  • In this paper, we analyzed RF-DC conversion efficiency for the dual -polarization rectenna and the antenna position changing. Dual-Polarization rectenna consist of a two major parts, receiving antenna and rectifying circuits. We made dual-polarization 2.45GHz rectenna using the two dipole antennas and patch antenna. Rectifying circuit is consisted by a Schottky-Barrier diode with a large forward current and reverse breakdown voltage. The results of RF-DC conversion efficiency for the each of designed dual-polarization rectenna has 69.1% with 360$\Omega$(dipole type) and 75.4% with 340$\Omega$(patch type ) optimum load resistor. When the each of dual-polarization rectenna has optimal load resistor, it's conversion efficiency shows of $\pm$20% in dipole type and $\pm$5 in patch type at 0~180。position.

  • PDF

A Study on Microstrip Log-Periodic Antenna for Receiving the Direct Broadcasting Satellite(DBS) Signal (위성방송 수신을 위한 대수주기 마이크로스트립 안테나에 대한 연구)

  • Jang, Won-Ho;Jin, Jae-Sun;Lee, Yun-Hyun
    • Journal of Advanced Navigation Technology
    • /
    • v.7 no.2
    • /
    • pp.101-107
    • /
    • 2003
  • In this study, we provide a single element log-periodic antenna that the feeding networks and array structures are aperture coupled and series dipole array type. We made the antenna for direct receiving the Moogoongwha satellite broadcasting signal. The transmission power was able to feed the patch dipole in series due to lay perpendicularly 8 series patch dipole on tapered slot. The patch dipole radiation pattern which fed in series power, make the main beam direction up $37^{\circ}{\sim}42^{\circ}$ within the BS/CS bandwidth. The main beam gain was measured 9.31~11.03 dBi. Using 32 elements to array the elements properly, we acquire $4{\times}8$ array structure on limited PCB board. As a result, it has been found that the new planar DBS antenna structure have high gain over 10dBi and acceptable elevation angle over 42 degree, and we can apply this result to commercial DBS reception antenna manufacturing.

  • PDF

Design of Compact Series-fed Dipole Pair Antenna with End-loaded Rectangular Patches (사각형 패치가 종단에 장하된 소형 직렬 급전 다이폴 쌍 안테나 설계)

  • Yeo, Junho;Lee, Jong-Ig;Park, Jin-Taek
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.17 no.10
    • /
    • pp.2245-2251
    • /
    • 2013
  • In this paper, a design of a compact series-fed dipole pair(SDP) antenna with end-loaded rectangular patches is presented. In order to reduce the lateral size of a conventional SDP antenna, rectangular patches are end-loaded to the two dipole elements of the SDP antenna and a grooved ground plane is used by adding a patch at both ends of the ground plane. The effects of varying the length and width of the rectangular patches on the antenna performance such as input reflection coefficient are investigated. An optimized compact SDP antenna covering a frequency band ranging from 1.7 GHz to 2.7 GHz is designed and fabricated on an FR4 substrate. The total width of the fabricated prototype of the proposed antenna is reduced by approximately 14.3% compared to the conventional SDP antenna. Experimental results show that the antenna presents a 48.7% bandwidth in the range of 1.68-2.76 GHz and a stable gain of 5.6-6.0 dBi with minimal degradation. Moreover, a front-to-back ratio is improved by about 0.7 to 7.4 dB.

Design of beam tilting microstrip patch array antenna using H-plane coupling (H-면 결합을 이용한 빔 틸팅 마이크로스트립 패치 배열 안테나 설계)

  • 하재권;최성수;박동철
    • Proceedings of the Korea Electromagnetic Engineering Society Conference
    • /
    • 2002.11a
    • /
    • pp.293-296
    • /
    • 2002
  • In this paper, we proposed a beam tilting microstrip patch array antenna for the reception of satellite signals by using low cost copper etched polyester films and foams. The configuration and coupling mechanism of the proposed antenna are similar to the dipole Yagi-Uda antenna. It is composed of 3 layers of polyester films and three layers of foam. In order to prevent unwanted radiation and coupling loss by microstrip feeding networks and parasitic patches, a stacked layer with rectangular slots above the driver patch array is inserted. The 16${\times}$8 element microstrip Patch way antenna is Presented by experimental results. Its beam patterns are affected by many parameters such as sizes of the patches, gap between the patches. characteristics of the substrates, feeding method, etc. Owing to its complexities of various design parameters, both simulation and experiment were performed. The fabricated antenna received DBS signal from KOREASAT 3 by doing nothing but adjusting azimuth direction.

  • PDF

Broadband planar dipole with a t-shaped slit for digital TV Reception (t형 슬릿을 갖는 디지털 TV 수신용 광대역 평면 다이폴)

  • Lee, Jong-Ig;Yeo, Junho;Yang, Myung-Ku;Lee, Yoon-Ju;Kwon, Jun-Hyuk
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2014.10a
    • /
    • pp.159-160
    • /
    • 2014
  • In this paper, a design method for a broadband planar dipole antenna for the terrestrial digital television (DTV) reception is studied. The proposed antenna is an asymmetrical planar dipole consists of a rectangular patch with an embedded t-shaped slit, and the antenna shape is printed on a side of an FR4 substrate. The effects of geometrical parameters on the antenna performance are examined, and the parameters are adjusted to operate in the DTV frequency band of 470-806 MHz. The prototype antenna is fabricated on an FR4 substrate with a size of $260mm{\times}30mm$. The performance of the antenna is tested experimentally to verify the results of this study.

  • PDF

A Thin Folded Dipole UHF RFID Tag Antenna with Shorting Pins for Metallic Objects

  • Tang, Tao;Du, Guo-Hong
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.6 no.9
    • /
    • pp.2253-2265
    • /
    • 2012
  • A novel folded dipole type microstrip patch antenna designed for ultrahigh frequency (UHF) band radio frequency identification (RFID) tag is presented in this paper, which can be used on the metallic objects. The presented antenna is fabricated on a very thin Rogers 5880 substrate with a thickness of 0.508 mm. The structure consists of two folded dipole and two symmetrical shorting pins placed at both sides of feed point. An adjustable frequency response can be easy obtained via modify the location and radius of the shorting pins. The antenna has been analyzed by full wave simulations soft. The simulated bandwidth is about 67.2 MHz, which covers the Europe and North America UHF RFID frequency range. A manufactured prototype has been fabricated and measured to demonstrate the antenna performances. The simulation results agree with the measurement data well. The measured maximum reading range of the prototype can be reached 4.1 m in free space, and 3.2 m on a metal plate whose size is $150{\times}150{\times}8mm^3$.

Design of Broadband Planar Dipole Antenna for Indoor Digital TV Reception (실내 디지털 TV 수신용 광대역 평면 다이폴 안테나 설계)

  • Lee, Jong-Ig;Yeo, Junho;Park, Jin-Taek
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.18 no.3
    • /
    • pp.497-502
    • /
    • 2014
  • In this paper, a design method for a broadband planar dipole antenna for terrestrial digital television (DTV) reception is studied. The dipole is modified to half bow-tie type for size reduction. The balun between feeding microstrip line and coplanar strip (CPS) line is implemented with a rectangular patch inserted along the center of the CPS line. The proposed antenna is the structure of dual resonances, one is due to the dipole and the other is due to the CPS line attached by the balun. The effects of various geometrical parameters on the antenna performance are examined, and the antenna is designed for terrestrial DTV band (470-806 MHz). The prototype antenna is fabricated on an FR4 substrate with a size of $95mm{\times}178mm$, and tested experimentally to verify the results of this study.

A Study on the Conversion Efficiency of Rectenna for Microwave Wireless Power Transmission System (Rectenna의 형태와 방향변화에 따른 변환효율 분석에 관한 연구)

  • 윤동기;박양하김관호이영철
    • Proceedings of the IEEK Conference
    • /
    • 1998.06a
    • /
    • pp.189-192
    • /
    • 1998
  • In this paper, we analyzed Microwave-DC conversion efficiency for the rectennas and it's position change. Rectenna consist of a two major parts, receiveing antenna and rectifying circuits. We made two types of 2.45C rectennas which the dipole and the patch antenna. Rectifying circuit is a GaAs-schottky diode with a large forward current and reverse breakdown voltage. The results of RF-DC conversion efficiency for two rectennas, patch type has 75.6% efficiency with 400$\Omega$ load resistor and dipole type has 69.75% efficiency with 360$\Omega$ load resistor. When the rectennas has optimal load resistor, Rectenna efficiency shows of $\pm10%$ at $70^{\circ}$~$110^{\circ}$ position.

  • PDF

Design of Double-Dipole Quasi-Yagi Antenna with 7 dBi gain (7 dBi 이득을 가지는 이중 다이폴 준-야기 안테나 설계)

  • Yeo, Junho;Lee, Jong-Ig;Baek, Woon-Seok
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.20 no.2
    • /
    • pp.245-252
    • /
    • 2016
  • In this paper, the design of a double-dipole quasi-Yagi antenna (DDQYA) with a gain over 7 dBi at 1.70-2.70 GHz band is studied. The proposed DDQYA consists of two strip dipoles with different lengths and a ground reflector, which are connected trough a coplanar stripline. The length of the second dipole is adjusted to increase the gain in the low frequency band, whereas a rectangular patch director is appended to the DDQYA to enhance the gain in the middle and high frequency band. The effects of the length of the second dipole, and the length and width of the director on the antenna performance are analyzed, and final design parameters to obtain a gain over 7 dBi are obtained. A prototype of the proposed DDQYA is fabricated on an FR4 substrate, and the experimental results show that the antenna has a frequency band of 1.60-2.86 GHz for a VSWR < 2, and measured gain ranges 7.2-7.6 dBi at 1.70-2.70 GHz band.

3-Element Quasi-Yagi Antenna with a Modified Balun for DTV Reception (변형된 밸런을 갖는 DTV 수신용 3소자 준-야기 안테나)

  • Lee, Jong-Ig;Yeo, Junho
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.21 no.4
    • /
    • pp.672-678
    • /
    • 2017
  • In this paper, we studied a design method for a broadband quasi-Yagi antenna (QYA) for terrestrial digital television (DTV) reception. The proposed antenna is composed of a dipole driver, a rectangular patch type director close to the dipole, and a ground reflector printed on an FR4 substrate. A balun between a microstrip line and a coplanar strip (CPS) line is a rectangular patch inserted along the center of the CPS. The end of the balun is connected to the CPS line through a shorting pin. An antenna, as an design example for the proposed antenna, is designed for the operation in the frequency band of 470-806 MHz for terrestrial DTV, and the characteristics of the designed antenna are examined. The antenna has a good performance such as a frequency band of 430-842 MHz for a voltage standing wave ratio < 2, a gain > 3.7 dBi, and a front-to-back ratio > 7.4 dB.