• Title/Summary/Keyword: Dipole array

Search Result 162, Processing Time 0.029 seconds

Delineation of water seepage in earth-fill embankments by electrical resistivity method (전기비저항탐사에 의한 제당의 누수구간 탐지)

  • 정승환;김정호;양재만;한규언;김영웅
    • The Journal of Engineering Geology
    • /
    • v.2 no.1
    • /
    • pp.47-57
    • /
    • 1992
  • Geophysical methods applied to water seepage problem in earth-fill embankment attempt to detect and map the estimate of size and depth of the seepage path. Seepage zones generally produce lOW resistivity anomalies due to high saturation of water. Dipole-dipole resistivity surveying technique, which is actually a combined sounding-profiling procedure, was used to delineate the seepage path through this study. In this study, the finite difference methods to solve the electric potential distribution in 2 112 dimension, was adopted as the numerical scheme for the forward problem. Second order Marquart's method, one the iterative damped least square methods, was selected for the automatic inversion. The computer program was implemented in FORTRAN 77 for 1 6-bit personal computer. In this paper, we present a case history which illustrates the application of dipole-dipole resistivity method to the delineation of water flow in earth-fill structures. Also the automatic two-dimensional resistivity inversion was applied to a field data where the interpretive advantages of the program become evident.

  • PDF

Electrical Resistivity-Measurements for the Detection of Fracture Zones in the Woraksan Granitic-Bodies (월악산화강암체의 파쇄대규명을 위한 전기비저항탐사)

  • 김지수;권일룡
    • The Journal of Engineering Geology
    • /
    • v.7 no.2
    • /
    • pp.113-126
    • /
    • 1997
  • Electrical resistivity methods of dipole - dipole array profiling and Schiumberger array sounding were tested on a segment of the Woraksan granitic batholith for the research into the imaging of irregular attitudes of fracture zones in the crystaaline rock in terms of processing and interpretation schemes. By the dipole - dipole array method, inhomogeneities such as small scale of fracture zones were properly delineated down at some depth even within hard rock environment. Fracture zones were interpreted to be at the boundaries between the high amplitude zone and very low amplitude zone in the resistivity plot and they were also successfully outlined in two - dimensional layer and pseudo - three - dimensional volume constructed by the incorporation of vertical sounding data. The surface location of the fracture zones was correlated by the zero - crossing point in the VLF(very low frequency) electromagnetic data. Pseudo - three - dimensional attitudes of fracture zones were efficiently illuminated by optimum projection angle. The mean of bulk resistivity for the Woraksan granite and the near fracture zones is estimated to be approximately of 4,000 ohm - m which is much higher than the value of 700 ohm - m for the Rwachunri limesilicate environment. This difference is due to both the rock type, i.e., biotite granite vs limesilicate, and the occurrence of secondary openings of fold and fault associated with the intrusion of granite. In this study statistical analyses on the resistivity color plot were performed in terms of three representative statistical moments, i.e., standard deviation, skewness, and kurtosis. The fracture zones in the standard deviation plot were characterized by the higher value, compared to the value of homogeneous portion. The upper boundary of the high resistivity zone was also successfully delineated in the skewness and kurtosis plots.

  • PDF

Distribution of Resistivity Zones Near Nari Caldera, Ulleung-do, Korea, Inferred from Modified Dipole Arrays (변형 쌍극자배열법을 적용한 울릉도 나리 칼데라 주변 조면안산암 지역의 비저항분포 특성 분석)

  • Kim, Ki-Beom;Kim, Man-Il
    • The Journal of Engineering Geology
    • /
    • v.29 no.3
    • /
    • pp.223-236
    • /
    • 2019
  • Resistivity surveys can identify the distribution of geological units and structures (including fragmented fault zones), the extent of weathered and modified geological strata, and the characteristics of groundwater. This study aims to analyze the underground sedimentary layers and geological structures near the Nari and Albong Basins of Ulleung-do, Korea, focusing on six survey lines to identify the spatial trends in subsurface resistivity. A modified dipole array method (D method) was employed, combining resistivity results obtained by existing dipole array methods (A and C methods). The modified method provides optimal analysis of the cross-section of underground resistivity, and shows a clear boundary between a low-resistivity zone (${\leq}500{\Omega}{\cdot}m$) of sedimentary layers and weak zones, and a high-resistivity zone (${\geq}5,000{\Omega}{\cdot}m$) of volcanic rock (trachyandesite). The estimated average thickness of the sedimentary layers is 50~100 m for the Albong Basin and 100~200 m for the Nari Basin. An anomaly zone, different from the weak zone in the bedrock, is identified as a caldera fault, and the low-resistivity zone extends from the surface down to the lowest survey depths.

MUTUAL COUPLING EFFECTS ON THE PERFORMANCE OF A SPACE-TAPERED RECTANGULAR PHASED ARRAY (공간체감된 구형 위상어레이의 성능에 미치는 상호결합의 영향)

  • Chang Byong-Kun
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.9 no.2
    • /
    • pp.415-421
    • /
    • 2005
  • The radiating or receiving characteristics of array elements (i.e., antennas) are changed from those of isolated elements due to mutual coupling effects and the array performance becomes different from those originally designed by assuming isolated elements. The effects of mutual coupling on the performance of a rectangular array with triangular grid geometry of dipoles above a ground plane are discussed with respect to element pattern. The concept of element gain function is used to examine the effects of mutual coupling on the array performance in terms of sidelobe level in the uniformly spaced and space-tapered rectangular arrays with triangular grid geometry of dipoles. It was shown that the sidelobe performance improved in the space-tapered array compared to the uniformly spaced array in the presence of mutual coupling effects. Computer simulation results are presented.

Comparison of electrode arrays for earth resistivity image reconstruction of vertical multi layers (수직 다층구조의 대지저항률 영상복원을 위한 전극배열법의 비교)

  • Boo, Chang-Jin;Kim, Ho-Chan;Kang, Min-Jae
    • Journal of IKEEE
    • /
    • v.22 no.1
    • /
    • pp.149-155
    • /
    • 2018
  • In this paper, we used ET(Electrical Tomography) for earth resistivity image reconstruction of vertical multi layer underground model. The earth resistivity is analyzed generally as the parallel multi-layer model, however possibly there happens vertical layer model. Here to find the best electrode array in case of vertical layer underground model, Wenner, Schlumberger, and Dipole-dipole electrode arrays, which are well known electrode arrays used in ET, have been tested. And Gauss-Newton algorithm is used in ET inversion. RMS error analysis shows that Wenner electrode array is best in imaging.

Small ESPAR Antenna with 180 Degree Azimuth Beam Coverage (180도 방위 빔 커버리지 특성을 갖는 UNII대역 소형 전자 빔 조향 기생 배열 안테나)

  • Choi, Ik-Guen;Ju, Sang-Ho
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.15 no.2
    • /
    • pp.11-16
    • /
    • 2010
  • In this papar, we have proposed a small electronically steerable parasitic array radiator with 180 degree azimuth beam coverage and high gain characteristics. The proposed antenna is composed of a uniplanar Yagi dipole as a feeding element and two dipoles as parasitic elements. The fabricated antenna is tested by electronically changing the reactance loaded on the parasitic dipoles and the results show that it has 5.2dB~6.7dB gain in $-90^{\circ}{\sim}90^{\circ}$wide azimuth range and -10dB return loss characteristics within 5.725GHz~5.825GHz UNII band.

Design of beam tilting microstrip patch array antenna using H-plane coupling (H-면 결합을 이용한 빔 틸팅 마이크로스트립 패치 배열 안테나 설계)

  • 하재권;최성수;박동철
    • Proceedings of the Korea Electromagnetic Engineering Society Conference
    • /
    • 2002.11a
    • /
    • pp.293-296
    • /
    • 2002
  • In this paper, we proposed a beam tilting microstrip patch array antenna for the reception of satellite signals by using low cost copper etched polyester films and foams. The configuration and coupling mechanism of the proposed antenna are similar to the dipole Yagi-Uda antenna. It is composed of 3 layers of polyester films and three layers of foam. In order to prevent unwanted radiation and coupling loss by microstrip feeding networks and parasitic patches, a stacked layer with rectangular slots above the driver patch array is inserted. The 16${\times}$8 element microstrip Patch way antenna is Presented by experimental results. Its beam patterns are affected by many parameters such as sizes of the patches, gap between the patches. characteristics of the substrates, feeding method, etc. Owing to its complexities of various design parameters, both simulation and experiment were performed. The fabricated antenna received DBS signal from KOREASAT 3 by doing nothing but adjusting azimuth direction.

  • PDF

Simulation and Optimization of Nonperiodic Plasmonic Nano-Particles

  • Akhlaghi, Majid;Emami, Farzin;Sadeghi, Mokhtar Sha;Yazdanypoor, Mohammad
    • Journal of the Optical Society of Korea
    • /
    • v.18 no.1
    • /
    • pp.82-88
    • /
    • 2014
  • A binary-coupled dipole approximation (BCDA) is described for designing metal nanoparticles with nonperiodic structures in one, two, and three dimensions. This method can be used to simulate the variation of near- and far-field properties through the interactions of metal nanoparticles. An advantage of this method is in its combination with the binary particle swarm optimization (BPSO) algorithm to find the best array of nanoparticles from all possible arrays. The BPSO algorithm has been used to design an array of plasmonic nanospheres to achieve maximum absorption, scattering, and extinction coefficient spectra. In BPSO, a swarm consists of a matrix with binary entries controlling the presence ('1') or the absence ('0') of nanospheres in the array. This approach is useful in optical applications such as solar cells, biosensors, and plasmonic nanoantennae, and optical cloaking.

Characteristics of Distribution and Potential Route of Contaminants at Waste Disposal Site (폐기물매립지 주변의 오염물질 분포 및 이동 특성)

  • 박성원;황세호;이평구;박인화;신성천;이상규
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2001.04a
    • /
    • pp.144-148
    • /
    • 2001
  • A geophysical and geochemical study was performed to verify the depth of landfill as well as the horizontal/vertical distribution of leachate at the landfill site located in Gongju. The electrical resistivity, with dipole-dipole array and dipole spacing of 5m, was applied along the nine survey lines and electromagnetic induction survey was conducted along the perimeter traverse surrounding the landfill. Cations, anions and stable isotope ($\delta$D and $\delta$$^{18}$ O) analyses were performed on about 63 water and leachate samples collected in dry and rainy seasons at 31 sites. The result of electromagnetic induction survey make it possible to derive the potential route of leachate in the past or present. The imaging of processed resistivity field data show that the possible route of leachate doesn't exist except the survey line 7. The weak zone traversing the landfill, however, is revealed by the electrical resistivity imaging, which may be the potential route of leachate toward the deep ground. The geochemical data agree well with geophysical data for deducing possible route of leachate of the site.

  • PDF

The Development of Near-field Probing Method on the Base Station Array Antenna (기지국 배열안테나의 근역장 프로빙 방법의 개발)

  • Lim, Gye-jae
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.2 no.1
    • /
    • pp.65-72
    • /
    • 2009
  • For the evaluation of far-field performance by using the near-field probing on the base station dipole array antenna, the effects of mutual coupling depending on the heights between the array antenna with reflector and the probe were analyzed. When the height is varied in the near-field region, S parameters on the input ports of antenna and probe are measured and analyzed to decide the height for the minimum mutual coupling effect and the maximum probing efficiency. This height will be applicable to the near-field probing system design to achieve the precision far-field performance of a base station array antenna system.

  • PDF