• Title/Summary/Keyword: Dipole Sources

Search Result 55, Processing Time 0.022 seconds

Sonic Velocity Determination using Data from Monopole and Dipole Sources (음파검층에서의 속도결정 - monopole및 dipole소스의 비교 -)

  • Kong, Nam-Young;Lee, Sung-Jin;Zhao, Weijun;Kim, Yeoung-Hwa
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2006.06a
    • /
    • pp.225-231
    • /
    • 2006
  • As a study of efficient velocity analysis in sonic log, several preexisting techniques have been adopted to the sonic data taken from model borehole in Kangwon National University, and the results were compared. For the data taken from monopole source, Slowness-Time Coherence method which is a common technique for nondispersive wave was used. For the data taken from dipole source, conventional STC and Tang's method(Tang et al., 1995) were used. From the good matches in the P and Stoneley wave velocities, we could confirm the effectiveness of STC computation. We also could find that shear velocity obtained from Tang's method were exactly matched with shear velocity obtained from monopole source, and that the velocity were within the range of S wave velocity values obtained from conventional STC application to dispersive flexural waves.

  • PDF

Medium.Large Horizontal Axis Wind Turbine Noise Analysis Considering Blade Passing Frequency Noise and Retarded Time (블레이드 통과 주파수 소음과 지연시간을 고려한 중.대형 수평축 풍력발전기의 공력소음해석)

  • Kim, Hyun-Jung;Kim, Ho-Geon;Lee, Soo-Gab
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.11a
    • /
    • pp.1490-1493
    • /
    • 2007
  • Aerodynamic noise generated from wind turbines is predicted by it's classified source mechanisms using computational method. BPF noise according to the blade passing motion, is modelled on monopole and dipole sources. They are predicted by Farassat 1A equation. Airfoil self noise and turbulence ingestion noise are modelled upon quadrupole sources and are predicted by semi-empirical formulas composed on the groundwork of Brooks et al. and Lowson. Retarded time is considered, not only in low frequency noise prediction but also in turbulence ingestion noise and airfoil self noise prediction. Wind turbine noise emission of a 3MW wind turbine and a 600 kW wind turbine, standing for large and middle sized wind turbines, is analyzed.

  • PDF

A Study on Radiation Characteristic for Railway Noise (철도소음의 방사특성에 관한 연구)

  • Kim, Jae-Chul;Moon, Kyeong-Ho
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.27 no.4
    • /
    • pp.531-536
    • /
    • 2003
  • In order to control the railway noise. we should know the radiation characteristic of the noise during the train passage Generally, the railway noise sources for conventional trains are classified by the rolling noise and power unit noise in tangent track. In this Paper. we describe on a train model that is considered to be a row of point sources to calculate the radiation characteristic The calculation results are compared with short distance measurement of three kinds of trains (EMU, Mookungwha, Saemaul). It is shown that the radiation characteristic of the rolling noise that is major noise source of electric multiple unit is dipole type. We know that characteristic of the engine noise is radiated as the cosine type.

Dispersion Curves and Dispersion Characteristics Expected from Different Borehole Environments (시추공 환경변화에 따른 분산곡선 및 분산특성)

  • Zhao, Weijun;Kim, Yeong-Hwa;Kim, Jong-Man
    • The Journal of Engineering Geology
    • /
    • v.17 no.3
    • /
    • pp.329-337
    • /
    • 2007
  • For seven NX sized borehole models constructed from physical property data for representative geology in Korea, dispersion curves were derived and compared between models having different physical parameters. By comparing and analyzing the dispersion curves obtained from different sources (monopole and dipole) and different borehole sizes (76 mm and 150 mm), dispersion characteristics in sonic log could be understood better, particularly in the case of slim hole sonic log.

Prediction of Steady Performance of a Propeller by Using a Potential-Based Panel Method (포텐셜을 기저로한 패널법에 의한 프로펠러의 정상 성능 해석)

  • Kim, Young-Gi;Lee, Jin-Tae;Lee, Chang-Sup;Suh, Jung-Chun
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.30 no.1
    • /
    • pp.73-86
    • /
    • 1993
  • This paper describes a potential-based panel method for the prediction of steday performance of a marine propeller operating in a uniform oncoming flow. An integral equation with unknown dipole strengths is formulated by distributing the normal dipoles and/or sources on the blade and hub surfaces and the wake sheet, and is solved numerically upon discretization. A hyperboloidal panel has been adopted to compute the potential induced by a normal dipole on a non-planar quadrilateral panel. The Kutta condition is satisfied by iteratively annulling the pressure jumps at the trailing edge. Extensive convergence tests are carried out, and the influence of the wake model upon performance is studied. Predicted performance is shown to correlate well with the experiments.

  • PDF

Magnetic Field Analysis for Development of Magnetic Torquer

  • Yim, Jo-Ryeong;Lee, Seon-ho;Rhee, Seung-Wu
    • Bulletin of the Korean Space Science Society
    • /
    • 2003.10a
    • /
    • pp.63-63
    • /
    • 2003
  • There are many actuators and sensors used for attitude control system for KOMPSAT such as Reaction Wheel Assembly, Magnetic Torque Assembly, Dual Thruster Module, Solar array Drive, Three Axis Magnetometer, Conical Earth Sensor, Fine Sun Sensor Assembly, Coarse Sun Sensor Assembly, Gyro Reference Assembly and so on. For KOMPSA T satellite it has been considered using the Magnetic Torquer (MTQ) generating the magnetic dipole moment. In general, the magnetic dipole moment for satellite attitude control system is used for dumping out the excessive reaction wheel momentum so that the reaction wheel speed is not saturated. The objective of this study is to analyze the magnetic field characteristics generated by the Magnetic Torquer using the Maxwell 2D Field Simulator software. Currently, the developing model (DM) of the MTQ is being developed and manufactured at a company under the supervision of KARL MTQ is an electromagnet consisting of a ferromagnetic cylindrical core on which an excitation coil is wound. A current is passed through the coil to produce a dipole momentum in the ferromagnetic core. The configuration of the MTQ will be introduced in the presentation. The 2 dimensional model of the MTQ is drawn as axisymmetric models in RZ plane, and each corresponding material is assigned to the each MTQ object, the core, coil, and background. After the boundary conditions, current sources, and solution parameters are set up, the magnetic field intensities, directions, and other values specified by users can be calculated by using the finite element analysis. The theoretical magnetic field quantities obtained by the Maxwell 2D Simulator can be used for the basis of the development of the MTQ.

  • PDF

Effects on Logging-While-Drilling (LWD) data of mismatch between multipole sources (다극자 송신원들 사이의 불일치가 LWD 자료에 미치는 영향)

  • Byun, Joong-Moo;Joo, Yong-Hwan
    • Geophysics and Geophysical Exploration
    • /
    • v.12 no.1
    • /
    • pp.143-153
    • /
    • 2009
  • Using a discrete wavenumber method, we examine the effects on Logging-While-Drilling (LWD) logs when a mismatch exists between the amplitudes or generating times of the signals from individual monopoles in a LWD multipole source. An amplitude-mismatched LWD dipole/quadrupole source produces non-dipole/non-quadrupole modes as well as flexural and screw modes. The strongest of non-dipole/non-quadrupole modes is the Stoneley mode, whose amplitude increases with increasing mismatch. However, we can recover the flexural mode signals by A-C processing, and the screw mode by A-B+C-D processing, respectively. The Stoneley mode, which has the same amplitude at the same radial distance from the borehole axis, is cancelled out by A-C and A-B+C-D processing as long as the tool is placed at the centre of the borehole. The responses from a time-mismatched LWD multipole source look like the summation of responses by two or four monopole sources off the borehole axis. However, we can avoid the misinterpretation of the formation velocities by referring to the computed dispersion curves, which are independent of the arrival times of the modes, on the frequency semblance plot.

Grand Average in MEG and Crude Estimation of Anatomical Site (뇌자도에서 전체 평균과 이를 이용한 해부학적 위치 추정)

  • Kwon H.;Kim K.;Kim J. M.;Lee Y. H.;Park Y. K.
    • Journal of Biomedical Engineering Research
    • /
    • v.25 no.6
    • /
    • pp.575-580
    • /
    • 2004
  • In this work, a method is presented to find an anatomical site of a current source crudely in a standard brain using grand average of MEG data. Minimum norm estimation algorithm and truncated singular value decomposition were applied to calculate the distributed sources that can reproduce the measured signals. Grand average over all subjects was obtained from the transformed signals, which would be detected in a standard sensor plane by the obtained distributed current sources. In the simulation study, it was shown that the localized dipole using the grand average is consistent with the mean location of localized dipoles of all subjects within several mm even with large inter-individual differences of sensor positions. This result suggests that the mean location of low level signal source can be estimated as a dipole source in grand average and it was confirmed in the localization of the current source of N100m. when the localized dipole is registered on a standard brain. This result also suggests that the activity region obtained from grand average can be crudely estimated on a standard brain using the source location of the N100m as a reference point.

A comparative study of borehole size and tool effect on dispersion curves (시추공경과 공내검층기가 분산곡선에 미치는 영향에 대한 비교 연구)

  • Zhao, Weijun;Kim, Jong-Man;Kim, Yeong-Hwa
    • Geophysics and Geophysical Exploration
    • /
    • v.12 no.1
    • /
    • pp.154-162
    • /
    • 2009
  • Sonic wave dispersion characteristics are one of the most important targets of study, particularly in estimating shear wave velocity from borehole sonic logging. We have tested dispersion characteristics using monopole and dipole sources. Theoretical dispersion curves were computed for tool-absent and tool-included models having the same physical properties but different diameters (including ${\Phi}520mm$, ${\Phi}150mm$, and ${\Phi}76mm$). Comparisons were made between boreholes of different sizes and between tool-absent and tool-included models. Between the tool-included and the tool-absent boreholes, a close similarity in dispersion curve shape was revealed for the monopole source, and a significant difference was shown for the dipole source. However, for the cut-off frequency, particularly in the engineering boreholes (${\Phi}76mm$ and ${\Phi}50mm$), a significant difference was observed for signals from the monopole source, but approximately the same cut-off frequencies were found with the dipole source. This indicates the need of careful choice of source frequency in monopole-source sonic logging, particularly in an engineering borehole. The results of numerical experiments show that cut-off frequency is exponentially proportional to the inverse of borehole radius, irrespective of the mode type and the presence of a tool, and that the cut-off frequencies for each borehole environment could be expressed as an exponential function, rather than the inversely proportional relationship between the cut-off frequency and the borehole radius that was previously generally recognised. From the direct comparison of dispersion curves, the effects on the dispersion characteristics of borehole size and the presence of the tool can be revealed more clearly than in previous studies, which presented the dispersion curve and/or characteristics for each borehole environment separately.

Broadband Noise Analysis of Horizontal Axis Wind Turbines Including Low Frequency Noise (수평축 풍력발전기의 저주파소음을 포함한 광대역소음 해석에 관한 연구)

  • Him, Hyun-Jung;Kim, Ho-Geun;Lee, Soo-Gab
    • New & Renewable Energy
    • /
    • v.3 no.3
    • /
    • pp.45-53
    • /
    • 2007
  • This paper demonstrates a computational method in predicting aerodynamic noise generated from wind turbines. Low frequency noise due to displacement of fluid and leading fluctuation, according to the blade passing motion, is modelled on monopole and dipole sources. They are predicted by Farassat 1A equation. Airfoil self noise and turbulence ingestion noise are modelled upon quadrupole sources and are predicted by semi-empirical formulas composed on the groundwork of Brooks et al. and Lowson. Aerodynamic flow in the vicinity of the blade should be obtained first, while noise source modelling need them as numerical inputs. Vortex Lattice Method(VLM) is used to compute aerodynamic conditions near blade. In the use of program X-foil [M.Drela] boundary layer characteristics are calculated to obtain airfoil self noise. Wind turbine blades are divided into spanwise unit panels, and each panel is considered as an independent source. Retarded time is considered, not only in low frequency noise but also In turbulence ingestion noise and airfoil self noise prediction. Numerical modelling is validated with measurement from NREL [AOC15/50 Turbine) and ETSU [Markham's VS45] wind turbine noise measurements.

  • PDF