• Title/Summary/Keyword: Dipole Model

Search Result 235, Processing Time 0.022 seconds

Electric Field Effect on Numerical Dosimetry for Wireless Power Transfer System (무선전력전송의 조사량 평가 시 전기장 영향)

  • Park, Sang-Wook
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.26 no.5
    • /
    • pp.499-505
    • /
    • 2015
  • The coupling effect of electric fields incident on the biological object is investigated in regards to dosimetry for a wireless power transfer(WPT) system using electromagnetic resonance phenomenon. The internal electric fields induced a biological sphere model exposed to a magnetic dipole are calculated with the finite-difference time-domain(FDTD) method considering both incident electric and magnetic fields, the impedance method considering only incident magnetic fields, and theoretical analysis. The results represent that the electric coupling effect on a biological object nearby the WPT system should be considered to conduct exact dosimetry.

Numerical Modeling of Tip Vortex Flow of Marine Propellers

  • Pyo, Sang-woo
    • Journal of Ship and Ocean Technology
    • /
    • v.1 no.2
    • /
    • pp.19-30
    • /
    • 1997
  • The accurate prediction of the flow and the pressure distribution near the tip of the blade is crucial in determining the tip vortex cavitation inception which usually occurs on the blade tip or inside the core of the tip vortex just downstream of the blade tip. An improved boundary element method is applied to the prediction of the flow around propeller blades, with emphasis at the tip region. In the method, the Blow adapted grid and a higher order panel method, which combines a hyperboloidal panel geometry with a hi-quadratic dipole distribution, are used in order to accurately model the trailing wake geometry and the highly rolled-up regions in the wake. The method is applied to several propeller geometries and the results have been found to agree well to the existing experimental data. Inviscid flow methods are able to predict the pressures at the tip as well as the shape of the trailing wake. On the other hand, they are unable to determine the flow inside the viscous core of the tip vortex, where cavitation inception often occurs. Thus, a method is presented that treats the flow inside the viscous core. The inner flow is treated with a 2-D Clavier-stokes solution without making any assumptions for axisymmetric flow and conicity of the flow along the tip trajectory. The method can thus allow the treatment of general propeller blade configurations. The velocity and pressure distributions inside the core are shown and compared to those from other numerical methods.

  • PDF

Optical Simulation Study on the Effect of Diffusing Substrate and Pillow Lenses on the Outcoupling Efficiency of Organic Light Emitting Diodes

  • Jeong, Su Seong;Ko, Jae-Hyeon
    • Journal of the Optical Society of Korea
    • /
    • v.17 no.3
    • /
    • pp.269-274
    • /
    • 2013
  • The effect of diffusing substrate and pillow lenses on the outcoupling efficiency of organic light-emitting diodes (OLEDs) was studied by optical simulation based on the point-dipole model. The diffusing substrate included Mie scatterers by which the condition of total internal reflection could be broken. The finite-difference time-domain method was used to obtain the intensity distribution on the transparent electrode of an OLED, which was used as a light source to carry out a ray-tracing simulation of the OLED and the diffusing substrate. It was found that the outcoupling efficiency of the OLED was sensitive to the thickness of organic layers and could be increased by 21.0% by adopting a diffusing substrate in which Mie scatterers whose radius was $2.0{\mu}m$ were included at the density of $10^7mm^{-3}$ and by 65.5% by forming one pillow lens with the radius of 2 mm on the front surface of the glass substrate. This study revealed that the outcoupling efficiency could be improved by adopting diffusing substrate and pillow lenses along with the optimization of the thickness of each layer in the OLED.

Fracture characterization with high frequency single-hole EM survey

  • Seo, Soon-Jee;Song, Yoon-Ho;Kim, Hee-Joon;Lee, Ki-Ha;Suh, Jung-Hee
    • Proceedings of the KSEEG Conference
    • /
    • 1999.04a
    • /
    • pp.90-93
    • /
    • 1999
  • We present a high frequency electromagnetic (EM) inversion scheme for detecting and characterizing a fracture using single-hole data. At high frequencies, say above tens of mega-hertz, since displacement currents cannot be ignored, electrical permittivity as well as electrical conductivity is to be considered together for analyzing the EM scattering data. In this paper, we have developed a three-step inversion scheme to map the fracture and to evaluate its electrical conductivity and permittivity. We performed EM profiling along the z-axis using three-component receivers for each source. The model was excited by a vertical magnetic dipole and the resistant magnetic fields were inverted using the non-linear least-squares method. Background resistivity and permittivity were easily obtained using vertical magnetic fields below 1 MHz and above 10 MHz, respectively. Both the vertical and dipping sheets were successfully mapped using the phase difference between 40 and 41 MHz. The electrical property of the sheet was well resolved using the information obtained in the previous two steps and secondary magnetic fields. Our study shows the potential of imaging the fracture in single-hole survey environment using the high frequency EM method.

  • PDF

Electromagnetic Tomography Using Finite Element Method (유한요소법을 이용한 전자탐사 토모그래피 연구)

  • Son, Jeong-Sul;Song, Yoon-Ho;Kim, Jung-Ho
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2007.06a
    • /
    • pp.185-190
    • /
    • 2007
  • In this study, we developed the 2.5D EM modeling and inversion algorithm for cross-hole source and receiver geometry. Considering the cross-hole environment, we use a VMD (vertical magnetic dipole) as a source and vertical magnetic fields as a measuring data. Developed inversion algorithm is tested for the isolated block model which has a conductive and a resistivity anomaly respectively. For the conductive anomaly, its size and resistivity are inverted well on the inversion results, while for the resistive anomaly, the location of anomalous block is shown on the inverted section, but its values are far from the exact value. Furthermore, artificial conductive anomalies are shown around the resistive anomalous zone. If we consider the inversion artifact shown in the test inversion of restive block, it is almost impossible to image the resistive zone. However, the main target of EM tomography in the engineering problem is conductive target such as fault zone, and contaminated zone etc., EM tomography algorithm can be used for detecting the anomalous zone.

  • PDF

Development of Hybrid Method for the Prediction of Internal Flow-induced Noise and Its Application to Throttle Valve Noise in an Automotive Engine

  • Cheong, Cheol-Ung;Kim, Sung-Tae;Kim, Jae-Heon;Lee, Soo-Gab
    • The Journal of the Acoustical Society of Korea
    • /
    • v.22 no.4E
    • /
    • pp.183-196
    • /
    • 2003
  • General algorithm is developed for the prediction of internal flow-induced noise. This algorithm is based on the integral formula derived by using the General Green Function, Lighthill's acoustic analogy and Curl's extension of Lighthill's. Novel approach of this algorithm is that the integral formula is so arranged as to predict frequency-domain acoustic signal at any location in a duct by using unsteady flow data in space and time, which can be provided by the Computational Fluid Dynamics Techniques. This semi-analytic model is applied to the prediction of internal aerodynamic noise from a throttle valve in an automotive engine. The predicted noise levels from the throttle valve are compared with actual measurements. This illustrative computation shows that the current method penn its generalized predictions of flow noise generated by bluff bodies and turbulence in flow ducts.

Three-Dimensional Noise Analysis of an Axial-Flow Fan using Computational Aero-Acoustics (공력음향학을 이용한 축류홴의 삼차원 소음 해석)

  • Kim, Joo-Hyung;Kim, Jin-Hyuk;Shin, Seungyeol;Kim, Kwang-Yong;Lee, Seungbae
    • The KSFM Journal of Fluid Machinery
    • /
    • v.15 no.5
    • /
    • pp.48-53
    • /
    • 2012
  • This paper presents a systematic procedure for three-dimensional noise analysis of an axial-flow fan by using computational aero-acoustics based on Ffowcs Williams-Hawkings equation. Flow-fields of a basic fan model are simulated by solving three-dimensional, unsteady, Reynolds-averaged Navier-Stokes equations using the commercial code ANSYS CFX 11.0. Starting with steady flow results, unsteady flow analysis is performed to extract the fluctuating pressures in the time domain at specified local points on the blade surface of the axial flow fan. The perturbed density wave by rotating blades reaches at the observer position, which is simulated by an in-house noise prediction software based on Ffowcs Williams-Hawkings equation. The detailed far-field noise signatures from the axial-flow fan are analyzed in terms of source types, field characteristics, and interpolation schemes.

Comparison of Correlation Algorithms between GTEM Cell and Semi-Anechoic Chamber (GTEM 셀과 전자파 반-무반사실 사이의 상관관계 알고리즘 비교.분석)

  • 권종화;이애경;최형도
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.13 no.2
    • /
    • pp.188-195
    • /
    • 2002
  • This paper statistically verifies two correlation algorithms by comparing the data of GTEM cell to those of semi-anechoic chamber (SAC). Correlation algorithms considered in this paper are 3 and 15 position methods, which simulate the EMI test for an equipment under test (EUT) over the ground plane by using the radiated power from EUT located within GTEM cell. Also, the results obtained by two algorithms are compared with the theoretical values calculated from an ideal dipole model. From the results, it was found that the data obtained by two correlation algorithms and SAC have a strong correlation. In addition, the EMI data by 3 position method showed higher than those by 15 position method and SAC measurements.

CALIBRATION OF VECTOR MAGNETOGRAMS BY SOLAR FLARE TELESCOPE OF BOAO

  • MOON YONG-JAE;PARK YOUNG DEUK;YUN HONG SIK
    • Journal of The Korean Astronomical Society
    • /
    • v.32 no.1
    • /
    • pp.65-73
    • /
    • 1999
  • In this study we present a new improved nonlinear calibration method for vector magnetograms made by the Solar Flare Telescope of BOAO. To identify Fe I 6302.5 line, we have scanned monochromatic images of the line integrated over filter passband, changing the location of the central transmission wavelength of a Lyot filter. Then we obtained a filter-convolved line profile, which is in good agreement with spectral atlas data provided by the Sacramento Peak Solar Observatory. The line profile has been used to derive calibration coefficients of longitudinal and transverse fields, employing the conventional line slope method under the weak field approximation. Our improved nonlinear calibration method has also been used to calculate theoretical Stokes polarization signals with various angles of inclination of magnetic fields. For its numerical test, we have compared input magnetic fields with the calibrated ones, which have been derived from the new improved non-linear method and the conventional method respectively. The numerical test shows that the calibrated fields obtained from the improved method are consistent with the input fields, but not with those from the conventional method. Finally, we applied our new improved method to a dipole model which characterizes a typical field configuration of a single, round sunspot. It is noted that the conventional method remarkably underestimates the transverse field component near the inner penumbra.

  • PDF

Electron Injection Mechanisms Varied by Conjugated Polyelectrolyte Electron Transporting Layers in Polymer Light-Emitting Diodes (고분자 발광다이오드에서 공액고분자 전해질 전자수송층에 의해 변화되는 전자주입 메카니즘)

  • Um, Seung-Soo;Park, Ju-Hyun
    • Polymer(Korea)
    • /
    • v.36 no.4
    • /
    • pp.519-524
    • /
    • 2012
  • Capacitance measurements of the polymer light-emitting diodes (PLEDs) with conjugated polyelectrolyte (CPE) electron transporting layers (ETLs) provide important information of device physics for understanding the function of CPEs as ETLs, together with current density-voltage-luminescence measurements. We investigated the counterion-dependent capacitance behaviors that present a highly negative or positive capacitance at the low frequency, and suggested different carrier injection mechanisms. Capacitance model study reveals that the electron injection mechanism can be described either by the dipole alignment scheme or by electronic charge carrier accumulation at the cathode/ETL/emission layer interfaces.