• Title/Summary/Keyword: Dipole Matrix Element

Search Result 6, Processing Time 0.016 seconds

Active Layer Simulation for the Tolerance of Epi-layer Thickness at CaAs/AlGaAs 3-Quantum Well Quantum Cascade Lasers (GaAs/AlGaAs 3-Quantum Well 양자폭포레이저 (Quantum Cascade Lasers)에서 허용되는 에피정밀도를 위한 활성영역 모의실험)

  • Lee, Hye-Jin;Lee, Cheng-Ming;Han, Il-Ki;Lee, Jung-Il;Kim, Moon-Deock
    • Journal of the Korean Vacuum Society
    • /
    • v.16 no.4
    • /
    • pp.273-278
    • /
    • 2007
  • For the simulation of active region in the quantum cascade lasers (QCL), we solved Schrodinger equation utilizing Runge-Kutta method and Shotting method. Wavelength, phonon resonant energy, and dipole matrix element were simulated with the variation of active region thickness. As a result of such simulation, it was suggested the tolerance range of epi-layer thickness error when 3-quantum well QCL structures are grown.

Analysis of Hydroelastic Responses for Very Large Floating Structures with a Shallow Draft (천흘수 초대형 부유식 해양규조물의 유탄성 응답해석)

  • 신현경
    • Journal of Ocean Engineering and Technology
    • /
    • v.14 no.2
    • /
    • pp.53-59
    • /
    • 2000
  • A numerical method to predict responses of very large floating structures in wave is suggested using source-dipole distribution method. The deflection of the plate is calculated by the finite element method in terms of rigidity matrix of each node. The calculated results for a plate are compared with the experimental ones.

  • PDF

Hydroelastic Responses of the Floating Airport Considering the Shape for Control Tower (관제탑 형상을 고려한 부유식 해상공항의 유탄성 운동)

  • 이호영;곽영기;박종환
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2001.10a
    • /
    • pp.196-201
    • /
    • 2001
  • Very Large Floating Structures have been planned for effective utilization of ocean space in recent years. The VLFS usually has a control tower to guide airplane securely. This paper present an effective method for calculating the wave induced hydroelastic responses of VLFS considering the effect of control tower-shapes. The source and dipole distribution method is used to calculate the hydrodynamic loads and equation of motion is derived by considering the static and dynamic coupling effects from different segments of the plate. The rigidity matrix for VLFS is formulated by finite element method using a plate theory. The calculated results for VLFS with a control tower are compared with those for VLFS without a control tower.

  • PDF

Hydroelastic Responses of Nonerctangular Floating Airports Considering the Shape of Control Tower (관제탑 형상에 의한 불균일한 부유식 해상공항의 유탄성 운동)

  • 이호영;곽영기;박종환
    • Journal of Ocean Engineering and Technology
    • /
    • v.16 no.2
    • /
    • pp.32-37
    • /
    • 2002
  • Very Large Floating Structures have been planned for effective utilization of ocean space in recent years. The nonerctangular VLFS usually has a control tower to guide airplane securely. This paper presents an effective method for calculating the wave induced hydroelastic responses of VLFS considering the effect of control tower-shapes. The source and dipole distribution method is used to calculate the plate. The rigidity matrix for VLFS is formulated by finite element method using a plate theory. The calculated results for nonerctangular VLFS with a control tower are compared with those for VLFS without a control tower.

A Fast Scheme for Inverting Single-Hole Electromagnetic Data

  • Kim Hee Joon;Lee Jung-Mo;Lee Ki Ha
    • Proceedings of the KSEEG Conference
    • /
    • 2002.04a
    • /
    • pp.167-169
    • /
    • 2002
  • The extended Born, or localized nonlinear approximation of integral equation (IE) solution has been applied to inverting single-hole electromagnetic (EM) data using a cylindrically symmetric model. The extended Born approximation is less accurate than a full solution but much superior to the simple Born approximation. When applied to the cylindrically symmetric model with a vertical magnetic dipole source, however, the accuracy of the extended Born approximation is greatly improved because the electric field is scalar and continuous everywhere. One of the most important steps in the inversion is the selection of a proper regularization parameter for stability. Occam's inversion (Constable et al., 1987) is an excellent method for obtaining a stable inverse solution. It is extremely slow when combined with a differential equation method because many forward simulations are needed but suitable for the extended Born solution because the Green's functions, the most time consuming part in IE methods, are repeatedly re-usable throughout the inversion. In addition, the If formulation also readily contains a sensitivity matrix, which can be revised at each iteration at little expense. The inversion algorithm developed in this study is quite stable and fast even if the optimum regularization parameter Is sought at each iteration step. Tn this paper we show inversion results using synthetic data obtained from a finite-element method and field data as well.

  • PDF

Three-Dimensional High-Frequency Electromagnetic Modeling Using Vector Finite Elements (벡터 유한 요소를 이용한 고주파 3차원 전자탐사 모델링)

  • Son Jeong-Sul;Song Yoonho;Chung Seung-Hwan;Suh Jung Hee
    • Geophysics and Geophysical Exploration
    • /
    • v.5 no.4
    • /
    • pp.280-290
    • /
    • 2002
  • Three-dimensional (3-D) electromagnetic (EM) modeling algorithm has been developed using finite element method (FEM) to acquire more efficient interpretation techniques of EM data. When FEM based on nodal elements is applied to EM problem, spurious solutions, so called 'vector parasite', are occurred due to the discontinuity of normal electric fields and may lead the completely erroneous results. Among the methods curing the spurious problem, this study adopts vector element of which basis function has the amplitude and direction. To reduce computational cost and required core memory, complex bi-conjugate gradient (CBCG) method is applied to solving complex symmetric matrix of FEM and point Jacobi method is used to accelerate convergence rate. To verify the developed 3-D EM modeling algorithm, its electric and magnetic field for a layered-earth model are compared with those of layered-earth solution. As we expected, the vector based FEM developed in this study does not cause ny vector parasite problem, while conventional nodal based FEM causes lots of errors due to the discontinuity of field variables. For testing the applicability to high frequencies 100 MHz is used as an operating frequency for the layer structure. Modeled fields calculated from developed code are also well matched with the layered-earth ones for a model with dielectric anomaly as well as conductive anomaly. In a vertical electric dipole source case, however, the discontinuity of field variables causes the conventional nodal based FEM to include a lot of errors due to the vector parasite. Even for the case, the vector based FEM gave almost the same results as the layered-earth solution. The magnetic fields induced by a dielectric anomaly at high frequencies show unique behaviors different from those by a conductive anomaly. Since our 3-D EM modeling code can reflect the effect from a dielectric anomaly as well as a conductive anomaly, it may be a groundwork not only to apply high frequency EM method to the field survey but also to analyze the fold data obtained by high frequency EM method.