• Title/Summary/Keyword: Dip Coating

Search Result 375, Processing Time 0.023 seconds

Preparation of Asymmetric Ceramic Membrane by Coating-Pyrolysis Process (도포-열분해법을 이용한 비대칭 세라믹 분리막 제조)

  • Ryu, Hyun-Wook;Kim, Byung-Hoon
    • Journal of the Korean Ceramic Society
    • /
    • v.39 no.12
    • /
    • pp.1153-1157
    • /
    • 2002
  • The fabrication of a three-layered asymmetric ceramic membrane was performed by slip casting of the porous alumina support and dip coating of the alumina intermediate layer using high purity ${\alpha}-Al_2O_3$ powders that have different particle size, followed by screen printing-pyrolysis of the $Tio_2$ layer as an ultrafilteration membrane using Ti-naphthenate solution. The bending strength, porosity and mean pore size of the alumina support were 231 kg/$cm^2$s, 30.26% and 0.19 ${mu}m$, respectively. The thickness of the intermediate layer was 30 ${mu}m$ and the mean pore size of that was 0.063 ${mu}m$. Also, the top layer was 0.5 ${mu}m$ thick and micropores with about 20 nm size were formed uniformly.

Sol-gel Coating of ZrO2 Film in Aluminium Etch Pit and Anodizing Properties (알루미늄 에치피트에 ZrO2 막의 졸-겔 코팅 및 양극산화 특성)

  • Chen, Fei;Park, Sang-Shik
    • Korean Journal of Materials Research
    • /
    • v.24 no.5
    • /
    • pp.259-265
    • /
    • 2014
  • $ZrO_2$ films were coated on aluminum etching foil by the sol-gel method to apply $ZrO_2$ as a dielectric material in an aluminum(Al) electrolytic capacitor. $ZrO_2$ films annealed above $450^{\circ}C$ appeared to have a tetragonal structure. The withdrawal speed during dip-coating, and the annealing temperature, influenced crack-growth in the films. The $ZrO_2$ films annealed at $500^{\circ}C$ exhibited a dielectric constant of 33 at 1 kHz. Also, uniform $ZrO_2$ tunnels formed in Al etch-pits $1{\mu}m$ in diameter. However, $ZrO_2$ film of 100-200 nm thickness showed the withstanding voltage of 15 V, which was unsuitable for a high-voltage capacitor. In order to improve the withstanding voltage, $ZrO_2$-coated Al etching foils were anodized at 300 V. After being anodized, the $Al_2O_3$ film grew in the directions of both the Al-metal matrix and the $ZrO_2$ film, and the $ZrO_2$-coated Al foil showed a withstanding voltage of 300 V. However, the capacitance of the $ZrO_2$-coated Al foil exhibited only a small increase because the thickness of the $Al_2O_3$ film was 4-5 times thicker than that of $ZrO_2$ film.

Preparation of Self-Cleaning Coating Films with Nano- and Microstructure (나노마이크로 구조의 자기세정 기능성 코팅막의 제조)

  • Jeong, A-Rong;Kim, Jun-Su;Yun, Jon-Do
    • Korean Journal of Materials Research
    • /
    • v.22 no.8
    • /
    • pp.416-420
    • /
    • 2012
  • Recently nanoscience and nanotechnology have been studied intensively, and many plants, insects, and animals in nature have been found to have nanostructures in their bodies. Among them, lotus leaves have a unique nanostructure and microstructure in combination and show superhydrophobicity and a self-cleaning function to wipe and clean impurities on their surfaces. Coating films with combined nanostructures and microstructures resembling those of lotus leaves may also have superhydrophobicity and self-cleaning functions; as a result, they could be used in various applications, such as in outfits, tents, building walls, or exterior surfaces of transportation vehicles like cars, ships, or airplanes. In this study, coating films were prepared by dip coating method using polypropylene polymers dissolved in a mixture of solvent, xylene and non-solvent, methylethylketon, and ethanol. Additionally, attempts were made to prepare nanostructures on top of microstructures by coating with the same coating solution with an addition of carbon nanotubes, or by applying a carbon nanotube over-coat on polymer coating films. Coating films prepared without carbon nanotubes were found to have superhydrophobicity, with a water contact angle of $152^{\circ}$ and sliding angle less than $2^{\circ}$. Coating films prepared with carbon nanotubes were also found to have a similar degree of superhydrophobicity, with a water contact angle of 150 degrees and a sliding angle of 3 degrees.

Preparation of Hydrophilic Coating Films by using of Aminosilane and Colloidal Silica (아미노실란과 콜로이드 실리카를 이용한 친수성 코팅 도막의 제조)

  • Ah, Chi-Yong;Lee, Byoung-Hwa;Song, Ki Chang
    • Korean Chemical Engineering Research
    • /
    • v.55 no.2
    • /
    • pp.247-252
    • /
    • 2017
  • Hydrophilic coating solutions were prepared by reacting a silane coupling agent, aminosilane with colloidal silica (15~20 nm in diameter). Hydrophilic coating films were also obtained by depositing the hydrophilic coating solutions on polycarbonate substrates by dip-coating and subsequently by thermal curing at $120^{\circ}C$. During this process, the effect of types of aminosilane was studied on the properties of coating films. As a result, coating films, prepared with 3-aminopropyltriethoxysilane (APTES) as aminosilane, showed contact angles of $25{\sim}44^{\circ}$ and a poor pencil hardness of B. On the other hand, coating films, prepared with 3-aminopropyltrimethoxysilane (APTMS) as aminosilane, exhibited contact angles of $26{\sim}37^{\circ}$ and a good pencil hardness of 2H.

Gas Permeation of Y2O3-SiC Composite Membrane

  • Song, Daheoi;Jung, Miewon
    • Journal of the Korean Ceramic Society
    • /
    • v.52 no.4
    • /
    • pp.234-236
    • /
    • 2015
  • $Y_2O_3$-SiC composite membrane was dip-coated using $Y_2O_3$ sol solution; this membrane was compared with a non- coated one. Each membrane was characterized by XRD, FE-SEM and BET techniques. Hydrogen and CO permeation were tested with self-manufactured Sievert's type equipment. $Y_2O_3$ coating was enhanced for the selectivity of the membrane ($H_2$ versus CO). The hydrogen permeation was measured at 1 bar with increasing temperatures. In case of the coated membrane, hydrogen permeation was found to be $1.24{\times}10^{-7}mol/m^2sPa$ with perm-selectivity of 4.26 at 323 K.

Effect of Sr/Zr Ratio and Organic Vehicle Addition on Bond Strength of $SrZrO_3 $ Thin Films ($SrZrO_3 $박막의 접착강도에 미치는 Sr/Zr 몰비와 유기화합물 첨가효과)

  • 이세종;이득용;예경환;송요승
    • Progress in Superconductivity and Cryogenics
    • /
    • v.4 no.1
    • /
    • pp.13-16
    • /
    • 2002
  • $SrZrO_3 $resistive oxide barriers on Ag sheathed Bi2223 tapes were prepared by the sol-gel and dip coating method to reduce AC coupling loss. The performance of the dip-coated $SrZrO_3 $ thin films was evaluated in terms of bond strength by varying the Sr/Zr mol ratio and the amount of organic vehicle (ethyl cellulose and a-terpineol) additives. The bond strength of the coatings increased as the Sr/Zr ratio decreased and the amount of organic vehicle rose, respectively. It was found that the effect of organic vehicle addition was more pronounced, suggesting that the adherence of the $SrZrO_3 $ films on Bi2223 tapes was governed primarily by the amount of organic vehicle additive.

Preparation of Glass Thin Film onto Plastic Surface by Sol-Gel Process (Sol-Gel 공정으로 Plastic표면에 Glass박막 제조에 관한 연구)

  • 양천회
    • Journal of the Korean Society of Safety
    • /
    • v.13 no.1
    • /
    • pp.85-91
    • /
    • 1998
  • Sol-gel derived silica films were prepared by dip-coating onto polymethylmethacylate with Tetraethoxysilane(TEOS) as starting materials. Film properties such as viscosity and thickness were investigated as a function of dip speed, waterprecursor ratio, sol aging time. IR spectra of the gel films prepared from TEOS at various R are given. At small values of R the absorption peaks assignable to C-H vibration in $-OC_2H_5$ groups are observed around 3000 and 1500-1300 $cm^{-1}$. These bands indicate that the -$-OC_2H_5$ groups are retained in the gel at small values of R because of incomplete hydrolysis of TEOS. Film behaviour was interpreted in terms of the dependence of hydrolysis and condensation rates on the interplay between sol pH and waterprecursor ratio. Film thickness was found to increase by approximately a factor of two as waterprecursor ratio increased from two to six. Film thickness also increased with sol prepolymerization time. Surface quality was correlated with processing conditions.

  • PDF

A Study on Low Temperature Phosphating for Cold Forming (냉간 가공용 인산염 피막처리의 저온화에 관한 연구)

  • 이만식;정충택;이광호;김준호;이근대;홍성수
    • Journal of the Korean institute of surface engineering
    • /
    • v.35 no.5
    • /
    • pp.279-288
    • /
    • 2002
  • Zinc phosphating for cold forming of steel was studied with emphasis on decreasing phosphating temperature. To lower phosphating temperature, some techniques, such as adding Cu ion into bath, using activator in the form of pre-dip, and aeration in bath, instead of using conventional accelerator, namely oxidizing agent, have been tried. It was revealed that phosphating, leading to coatings of Improved uniformity and fine crystal size, can be carried out using above techniques at lower temperature ($55^{\circ}C$) compared to conventional phosphating temperature ($80 ~ 90^{\circ}C$ ). Under present condition, it was seen that optimum concentrations of Cu ion in phosphating bath and activator in pre-dip are 0.015% (w/w) and 2.0 g/1, respectively. The coating weight was within the range of 15 ~ 20 g/$\m^2$. When lubricant was applied into phosphating coatings, the amount of lubricating component (total soap) was found to be 6 ~ 10 g/$\m^2$ and the lubricated panel revealed excellent lubricating properties.

Edge overcoating and buildup of continuously hot-dip metallized strip (연속 용융도금 강판의 에지 과도금 및 빌드업)

  • 박정렬;전선호;박노범
    • Journal of the Korean institute of surface engineering
    • /
    • v.32 no.4
    • /
    • pp.555-560
    • /
    • 1999
  • Gas wiping of continuously hot-dip galvanized coating on steel strip has generated edge overcoating and noise problems. The overcoating of zinc in the edge zone from edge to 50mm inside of the strip along its width was measured and analyzed. The overcoating is thought to occur due to the reduced impinging pressure of wiping gas onto the strip edges by the boundary effect and it can decrease by 50% or more by applying edge baffles when the baffle-to-strip distance is maintained to 20mm or less. The overcoating was compared with edgedrop of the cold-rolled steel substrate. Edge buildup mostly at the edge area 10 to be 20mm from the edge results in if the edgedrop is not sufficient enough to compensate for the overcoating to be flat on the edgedrop or/and if the overcoating is not small enough to the given edgedrop. Edge baffles can reduce effectively this type of edge buildup.

  • PDF

Evaluation and Optimization of Dispersion in Slurry Preparation of Commercial LTCC Material (상용 LTCC 소재의 슬러리 제조 공정에서 분산성 평가 및 최적화)

  • Kwon, Hyeok-Jung;Shin, Hyo-Soon;Yeo, Dong-Hun;Kim, Jong-Hee;Cho, Yong-Su
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.21 no.4
    • /
    • pp.341-347
    • /
    • 2008
  • Laminated LTCC components of high integrity, fabricated by thick film process, are applied to industrial field of IT technology along with miniaturization trend of electronic devices. Dispersion states were examined by several evaluation methods with MLS-22, which is one of commercial LTCC powders, to achieve optimal dispersion as basis for stable LTCC fabrication process. Slurry viscosity, surface roughness of dip-coated slide glass, sedimentaion of slurry, and SEM observation of dried surface were utilized with respective amount change of various commercial dispersants. Among these commercial dispersants, optimal dispersion state was obtained with 0.4 wt% of BYK-111, from the results of various evaluation methods.