• Title/Summary/Keyword: Dip

Search Result 1,377, Processing Time 0.023 seconds

Effects of Physicochemical and Environmental Factors on Spatial and Temporal Variations in Phytoplankton Pigment and its Community Composition in Jinhae Bay (진해만에서 물리화학적 환경요인이 식물플랑크톤 색소 및 군집조성의 시공간적 변화에 미치는 영향)

  • Na, Sujin;Lee, Jiyoung;Kim, Jeong Bae;Koo, Jun-Ho;Lee, Garam;Hwang, Hyunjin
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.27 no.2
    • /
    • pp.340-354
    • /
    • 2021
  • The aim of this study was to investigate the spatial and temporal distribution of phytoplankton biomass and community composition in Jinhae Bay on the southern coast of Korea. Phytoplankton pigment analysis was conducted using ultra performance liquid chromatography (UPLC) were conducted from April to December 2019 at seven stations. Temperature, salinity, and dissolved oxygen (DO) and inorganic nutrients (dissolved nitrogen, dissolved phosphorus, and orthosilicic acid) were measured to investigate the environmental factors associated with the structure of phytoplankton community. Phytoplankton biomass (Chl-a) was the highest in July (mean 15.4±4.3 ㎍/L) and the lowest in December (mean 3.5±0.6 ㎍/L). Fucoxanthin was the most abundant carotenoid and showed a similar variation pattern to Chl-a, peridinin, and Chl-b. Phytoplankton community composition analysis showed that diatoms were a predominant group with an average abundance of 70 % whereas chlorophytes, cryptophytes, and dinoflagellates often appeared with lower averages. Further, the dominance of diatoms was closely correlated with water temperature and N:P ratio, which might be influenced by high temperatures in the summer and nutrient loading from the land. Additionally, freshwater and nutrient input by rainfall was estimated to be the most important environmental factor. Hence, the spatial and temporal variations in the composition of phytoplankton pigments and phytoplankton community were correlated with physicochemical and environmental parameters.

Effects of Polyethylene Glycol Treatment for Improvement of Preservative Penetration and Prevention of Drying Check of Preservative Treated Round Post (방부처리 원주가공재의 방부제 침윤도 향상 및 건조 할렬 방지를 위한 폴리에틸렌 글리콜 처리 효과)

  • Lee, Jong-Shin;Yoon, Sun-Mi
    • Journal of the Korean Wood Science and Technology
    • /
    • v.30 no.4
    • /
    • pp.27-32
    • /
    • 2002
  • We investigated the effect of polyethylene glycol(PEG) treatment of preservative treated green japanese cedar(Cryptomeria japonica) round posts on their preservative penetration and check formation during the air drying. The round rods were dip-treated in 10% preservative solution of Basilit CFK for 1 day, followed by application(3, 5, and 10 times) with 50% PEG-400 solution, and then dried for 30 days under natural conditions. The rate of preservative penetration into sapwood was a low by 23.2% without PEG treatment, whereas that was a high by about 51.2~64.5% with PEG treatment. From these results, it was assumed that PEG played an affirmative role in the penetration of preservative components loaded onto the surface of round rods by dipping. During the air drying, the formation of drying checks decreased significantly with increasing application times of PEG. Even though some drying checks in PEG treated rods were developed, the number and size of checks was reduced remarkably by PEG treatment. After 2 months of outdoor exposure, PEG treatment failed to reduce checking in preservative-treated rods whereas finishing of polyurethane resin lacquer after PEG treatment was significantly effective in preventing check development.

Fracture Behaviors of Jointed Rock Model Containing an Opening Under Biaxial Compression Condition (이축압축 조건에서 공동이 존재하는 유사 절리암반 모델의 파괴 거동)

  • SaGong, Myung;Yoo, Jea-Ho;Park, Du-Hee;Lee, J.S.
    • Journal of the Korean Geotechnical Society
    • /
    • v.25 no.10
    • /
    • pp.17-30
    • /
    • 2009
  • Underground construction such as tunneling can induce damages on the surrounding rock mass, due to the stress concentration of in situ stresses and excessive energy input during construction sequence, such as blasting. The developed damage on the rock mass can have substantial influence on the mechanical and hydraulic behaviors of the rock masses around a tunnel. In this study, investigation on the generation of damage around an opening in a jointed rock model under biaxial compression condition was conducted. The joint dip angles employed are 30, 45, and 60 degrees to the horizontal, and the synthetic rock mass was made using early strength cement and water. From the biaxial compression test, initiation and propagation of tensile cracks at norm to the joint angle were found. The propagated tensile cracks eventually developed rock blocks, which were dislodged from the rock mass. Furthermore, the propagation process of the tensile cracks varies with joint angle: lower joint angle model shows more stable and progressive tensile crack propagation. The development of the tensile crack can be explained under the hypothesis that the rock segment encompassed by the joint set is subjected to the developing moment, which can be induced by the geometric irregularity around the opening in the rock model. The experiment results were simulated by using discrete element method PFC 2D. From the simulation, as has been observed from the test, a rock mass with lower joint angle produces wider damage region and rock block by tensile cracks. In addition, a rock model with lower joint angle shows progressive tensile cracks generation around the opening from the investigation of the interacted tensile cracks.

Numerical Simulation of Standing Column Well Ground Heat Pump System Part II: Parametric Study for Evaluation of the Performance of Standing Column Well (단일심정 지열히트펌프의 수치적 모델링 Part II: 단일심정 지열히트펌프의 성능평가를 위한 매개변수 연구)

  • Park, Du-Hee;Kim, Kwang-Kyun;Kwak, Dong-Yeop;Chang, Jae-Hoon;Na, Sang-Min
    • Journal of the Korean Geotechnical Society
    • /
    • v.26 no.2
    • /
    • pp.45-54
    • /
    • 2010
  • The SCW numerical model described in the companion paper was used to carry out a comprehensive parametric study to evaluate the performance of the SCW. The five ground related parameters, which are porosity, hydraulic conductivity, thermal conductivity, specific heat, geothermal gradient, and five SCW design parameters, which are pumping rate, well depth, well diameter, dip tube diameter, bleeding rate, were used in the study. Two types of numerical simulations were performed. The first type was used to perform short-term (24-hour) simulation, while the second type 14 day simulation. The study results indicate that the parameters that have important influence on the performance of SCW were hydraulic conductivity, thermal conductivity, geothermal gradient, pumping rate, and bleeding rate. The thermal conductivity had the most important influence on the performance of the SCW. With the increase in the geothermal gradient, the performance increased in the heat mode, but decreased in the cooling mode. The hydraulic conductivity influenced the performance when the value was larger than $10^{-4}m/s$. The depth of the well increased the performance, but at the cost of increased cost of boring. The bleeding had an important influence on SCW, greatly enhancing the performance at a limited increased cost of operation. Overall, this study showed that various factors had a cumulative influence on the performance of the SCW, and a numerical simulation can be used to accurately predict the performance of the SCW.

Guided-mode Resonances in Periodic Surface Structures Induced on Si Thin Film by a Laser (레이저에 의해 생성된 Si 박막의 주기적 표면 구조에서의 도파모드 공진 연구)

  • Ji Hyuk Lee;Yoon Joo Lee;Hyun Hong;Eun Sol Cho;Ji Young Park;Ju Hyeon Kim;Min Jin Kang;Eui Sun Hwang;Byoung-Ho Cheong
    • Korean Journal of Optics and Photonics
    • /
    • v.34 no.6
    • /
    • pp.241-247
    • /
    • 2023
  • We examine the spectral characteristics of laser-induced periodic surface structures (LIPSSs) formed on an amorphous silicon film irradiated by a 355-nm nanosecond laser. A Gaussian beam with a diameter of 196 ㎛ is used to perform a two-dimensional raster scan. The laser's pulse number is varied from 190 to 280, and its intensity is adjusted within 100-130 mJ/cm2. LIPSSs with a periodicity of approximately 330 nm form on the surface of the Si film, aligned perpendicular to the laser's polarization. Transmission spectra of the samples show dips around 700 nm for transverse electric polarization and around 500 nm for transverse magnetic polarization. The features are investigated with a one-dimensional-grating model using a rigorous coupled-wave analysis. Simulations confirm that the observed dips are due to the resonant modes, depending on the polarization.

Tectonic Structures and Hydrocarbon Potential in the Central Bransfield Basin, Antarctica (남극 브랜스필드 해협 중앙분지의 지체구조 및 석유부존 가능성)

  • Huh Sik;Kim Yeadong;Cheong Dae-Kyo;Jin Young Keun;Nam Sang Heon
    • The Korean Journal of Petroleum Geology
    • /
    • v.5 no.1_2 s.6
    • /
    • pp.9-15
    • /
    • 1997
  • The study area is located in the Central Bransfield Basin, Antarctica. To analyze the morphology of seafloor, structure of basement, and seismic stratigraphy of the sedimentary layers, we have acquired, processed, and interpreted the multi-channel seismic data. The northwest-southeastern back-arc extension dramatically changes seafloor morphology, volcanic and fault distribution, and basin structure along the spreading ridges. The northern continental shelf shows a narrow, steep topography. In contrast, the continental shelf or slope in the south, which is connected to the Antarctic Peninsula, has a gentle gradient. Volcanic activities resulted in the formation of large volcanos and basement highs near the spreading center, and small-scale volcanic diapirs on the shelf. A very long, continuous normal fault characterizes the northern shelf, whereas several basinward synthetic faults probably detach into the master fault in the south. Four transfer faults, the northwest-southeastern deep-parallel structures, controlled the complex distributions of the volcanos, normal faults, depocenters, and possibly hydrocarbon provinces in the study area. They have also deformed the basement structure and depositional pattern. Even though the Bransfield Basin was believed to be formed in the Late Cenozoic (about 4 Ma), the hydrocarbon potential may be very high due to thick sediment accumulation, high organic contents, high heat flow resulted from the active tectonics, and adequate traps.

  • PDF

Sedimentary History and Tectonics in the Southeastern Continental Shelf of Korea based on High Resolution Shallow Seismic Data. (고해상탄성파탐사자료에 의한 한국남동대륙붕의 퇴적사 및 조구조운동)

  • Min Geon Hong;Park Yong Ahn
    • The Korean Journal of Petroleum Geology
    • /
    • v.5 no.1_2 s.6
    • /
    • pp.1-8
    • /
    • 1997
  • Seismic stratigraphic analysis of the high resolution profiles obtained from the southeastern shelf of Korea divided the deposits into 4 sequences; 1) sequence D, 2) sequence C, 3) sequence B and 4) sequence A (Holocene sediments). Sequence D was deposited in shallow-water environment at west of the Yangsan Fault as the basin subsided. On the other hand, the eastern part was formed at the slope front. Landward part of the slope-front fill sediments were eroded and redeposited nearby slope due to the syndepositional tilting of the basin. This tilting probably resulted from the continuous closing of the Ulleung Basin. Sequence C is made of stacked successions of the lowstand fluvial sediments, transgressive sediments and marine highstand sediments derived from the paleo-river in the western part of the Yangsan Fault. Sequence C in the eastern part of the Yanshan Fault was formed at the shelf break. Progradation of the lowstand sediments resulted in broadening of the shelf. Sequence C in the eastern part was also tilted but the tilting was weaker than in Sequence D. During the formation of sequence B the tilting stopped and the point source instead of the line source started in both sides of the Yangsan Fault. Sequence B was composed of the highstand systems tract partially preserved around the Yokji island, lowstand systems tract mainly preserved in the Korea Trough and transgressive systems tract. After the stop of the tilting, the force of compression due to the closing of the Ulleung Basin may be released by the strike-slip faults instead of tilting.

  • PDF

Geology and Tectonics of the Mid-Central Region of South Korea (남한(南韓) 중부지역(中部地域)의 토질(土質)과 지구조(地構造))

  • Kim, Ok Joon
    • Economic and Environmental Geology
    • /
    • v.2 no.4
    • /
    • pp.73-90
    • /
    • 1969
  • The area studied is a southwestern part of Okcheon geosynclinal zone which streches diagonally across the Korean peninsula in the mid-central parts of South Korea, and is bounded by Charyeong mountain chains in the north and by Sobaek mountain chains in the south. The general trend of the zone is of NE-SW direction known as Sinian direction. Okcheon system of pre-Cambrian age occupies southwestern portion of Okcheon geosynclinal zone, and Choseon and Pyeongan systems of Cambrian to Triassic age in northeastern portion of the zone. It was defined by the writer that the former was called "Okcheon Paleogeosynclinal zone" and the latter "Okcheon Neogeosynclinal zone," although T. Kobayashi named them "Metamorphosed Okcheon zone" and "Non-metamorphosed Okcheon zone" respectively and thought that sedimentary formations in both zones were same in origin and of Paleozonic age, and C.M. Son also described that Okchon system was of post-Choseon (Ordovician) and pre-Kyeongsang (Cretaceous) in age. According to the present study two zones are separated by great fault so that the geology in both zones is not only entirely different in origin and age, but also their geolosical structures are discontinuous. Stratigraphy and structure of Okcheon system are clearly established and defined by the writer and its age is definitely pre-Cambrian. It is clarified by present study that the meta-sediments in and at vicinity of Charyeong mountain chains are correlated to Weonnam series of pre-Cambrian age which occupies and continues from northeast to southwest in and at south of Sobaek mountain chains, and both metasediments constitute basement of Okcheon system. Pyeongan, Daedong and Kyeongsang systems were deposited in few narrow intermontain basins in Okcheon paleogeosynclinal zone after it was emerged at the end of Carboniferous period. Granites of Jurassic and Cretaceous ages and volcanics of Cretaceous age are cropped out in the zone. Jurassic granite is aligned generally with the trend of Okcheon geosynclinal zone, whereas Cretaceous granite lacks of trend in distribution. Many isoclinal folds and thrust faults caused by Taebo orogeny at the end of Jurassic period are also parallel with Sinian directieon and dip steeply to northwest. Charyeong, Noryeong, Sobaek, and Deogyu mountain chains are located in areas of anticlinorium, and Kyongsang system in narrow synclinal zones. Folds in Okcheon neogeosynclinal zone are generally of N 70-80W direction but deviate to Sinian direction at the western parts of the zone. This phenomena is interpreted by the fact that the folds were originated by Songrim disturbance at the end of Triassic period and later partly modified by Taebo orogeny. Thrust faults of Taebo orogeny coentinue from Okcheon paleogeosynclinal zone into neogeosynclinal zone, forming imbricated structure as previously described. Strike-slip faults perpendicular to Sinian direction and shear faults diagonally across it by 55 degrees also prevail in neogeosynclinal zone. It is concluded from viewpoints on geology and geological structure that l)Okchon geosyncline had changed its location and affected by numerous disturbances through geologic time, and 2)mountain chains in the area such as Charyeong, Noryeong, Sobaek, and Deogyu were originated as folded mountains. Differing from others, however, Sobaek range was probably formed at the time of Songrim disturbance and modified later by Taebo orogeny. It is cut by Danyang-Jeomchon fault at the vicinity of Joryeong near Munkyeong village and does not continue to southwest beyond the fault, whereas southwestern portion of erstwhile Sobaek range continues to Taebaek rangd northeastward from Deogyusan passing through Sangju, Yecheon, and Andong. From these evidences, the writer has newly defined the erstwhile Sobaek range in such a way that Sobaek range is restricted only to northeastern portion and Deogyu range is named for the southwestern portion of previous Bobaek range.

  • PDF

Development of an Efficient Method of Screening for Watermelon Plants Resistant to Fusarium oxysporum f. sp. niveum (수박 덩굴쪼김병에 대한 효율적인 저항성 검정법 개발)

  • Jo, Eun Ju;Lee, Ji Hyun;Choi, Yong Ho;Kim, Jin-Cheol;Choi, Gyung Ja
    • Horticultural Science & Technology
    • /
    • v.33 no.3
    • /
    • pp.409-419
    • /
    • 2015
  • This study was conducted to establish an efficient screening method for watermelon plants resistant to Fusarium wilt (FW), which is caused by Fusarium oxysporum f. sp. niveum (Fon). An HA isolate was prepared from a wilted watermelon plant in Haman-gun and identified as F. oxysporum f. sp. niveum based on morphological characteristics, molecular analyses of ITS (internal transcribed spacer) and TEF (translation elongation factor $1{\alpha}$) sequences, and host specificity on cucurbits including watermelon, melon, oriental melon, and cucumber. The assay for disease response of watermelon differentials indicated that the HA isolate was race 0. Among seven liquid media tested, the highest amount of Fon spores was produced from V8-juice broth, which was selected as a medium for mass production of Fon. The disease assay for 21 watermelon and 11 watermelon-rootstock cultivars demonstrated that 20 watermelon cultivars except for 'Soknoranggul' were susceptible; 'Soknoranggul' was moderately resistant. All the tested rootstock cultivars were highly resistant to the HA isolate. The evaluation of disease development depending on various conditions suggested that an efficient screening method for FW resistance in watermelon plants is to dip the roots of 10-day-old seedlings in spore suspension of $1.0{\times}10^5-1.0{\times}10^6conidia{\cdot}mL^{-1}$ for 30 min., to transplant the seedlings to plastic pots with a fertilized soil, and then to cultivate the plants at $25^{\circ}C$ for 3 weeks.

Oceanographic Features Around Aquaculture Areas of the Eastern Coast of Korea (동해안 연안양식장 주변해역의 해양학적 특성)

  • Jeong, Hee-Dong;Kim, Sang-Woo;Kwon, Kee-Young;Lim, Jin-Wook;Kwoun, Chul-Hui
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.19 no.4
    • /
    • pp.334-344
    • /
    • 2013
  • In order to understand the characteristics of oceanic environment in the coastal aquaculture waters of the East Sea, the observation of the CTD (temperature and salinity), dissolved oxygen, chlorophyll a and N/P (DIN ($NO_2$-N, $NO_3$-N, $NH_4$-N) : DIP($PO_4$-P)) ratio was carried out at Sokcho, Jukbyon and Gampo in February, April, June, August, October, December 2013. Based on T(temperature)-S(salinity) diagram analysis, the water masses in the study area were divided into 3 groups; Tsushima Surface Water (TSW: $20-28.3^{\circ}C$ temperatures and 31.04-33.75 salinities), Tsushima Middle Water (TMW: $8.1-16.3^{\circ}C$ and 33.00-34.49), and North Korean Cold Water (NKCW: $1.8-9.4^{\circ}C$ and 33.78-34.42). In winter, DO concentrations in the northern part were higher than those in southern part. In spring and fall, they were low in the surface layer, and increased in summer. Chl-a concentrations < $0.4{\mu}g/L$ dominated in February, April, October and December. Chl-a concentrations were higher in June and August. In particular, the highest Chl-a concentration > $2{\mu}g/L$ was observed in the middle layer of Gampo in August. In February, April, June and December, the N/P ratio in the most of the water masses was less than the Redfield ratio (16), indicating that nitrate did act as a limiting factor in phytoplankton growth. On the contrary, in August and October, the N/P ratio in surface and sub-surface layer was greater than the Redfield ratio, suggesting that phosphate was a limiting factor.