• Title/Summary/Keyword: Dip

Search Result 1,383, Processing Time 0.024 seconds

3-Dimensional Coating Polymer Microneedles for Economical and Efficient Transdermal Drug Delivery (경제적이고 효과적인 경피 약물전달을 위한 3차원 구조의 코팅 고분자 마이크로니들)

  • Lee, Han-Sol;Park, Jung-Hwan
    • Polymer(Korea)
    • /
    • v.38 no.3
    • /
    • pp.391-396
    • /
    • 2014
  • Polymer microneedles can be fabricated by a micromolding method, an easy and cost-effective method. However, it is not easy to achieve uniform coating with an aqueous coating solution due to hydrophobic surface of polymer microneedles. 3-Dimensional coating polymer microneedles could deliver more than twice as much dose as in-plane metal microneedles by increasing coating area and the number of microneedles per unit area. A uniform coating was not obtained by addition of coating additives in the coating solution. The satisfied coating was achieved by treatment of surface of polymer microneedle with metal deposition and UV/ozone, and UV/ozone treatment was an ultimate surface treatment method based on biological safety. Calcein coating polymer microneedles were prepared by using UV/ozone treatment and followed dip-coating, and they delivered calcein in porcine skin successfully after 15 min of insertion.

Cost Analysis of Ocean Outfall and Tertiary Treatment Processes in Suyong Sewage Treatment Plant (수영 하수처리장 방류수의 해중 방류법과 3차 처리시설 설치시 비용 비교 분석)

  • 박해식;조은일;박청길
    • Journal of Environmental Science International
    • /
    • v.8 no.1
    • /
    • pp.115-123
    • /
    • 1999
  • Sewage has been almost treated by secondary treatment process. Secondary-treated effluent of sewage treatment plant caused the pollution of nearby beach. Nitrogen(N) and Phosphorus(P) in effluent water have caused many problems on estuary, such as red tide, eutrophication and aquatic toxicity. Therefore, the effective nitrogen and phosphorus removal from sewage treatment plants is necessary to prevent those pollution problems. However, little sewage treatment plant in Korea is effectively being operated for the removal of the nutrients. This study is analyzed for the effectiveness of cost when tertiary treatment process and Ocean Outfall are applied for the water quality of Suyong Bay After secondary treatment process, the effluent was discharged from the seabed in the depth of 32m of 4000m offshore. Pollutant concentration is decreased as much as the 180 times after the result of initial dilution, so that environmental protection requirement of Suyong Bay can satisfied. This Ocean Outfall process can save the 2.6~3.5 times as much as the cost of construction and operation for tertiary treatment process running over a 20 year.

  • PDF

Impacts of dam discharge on river environments and phytoplankton communities in a regulated river system, the lower Han River of South Korea

  • Jung, Seung Won;Kwon, Oh Youn;Yun, Suk Min;Joo, Hyoung Min;Kang, Jung-Hoon;Lee, Jin Hwan
    • Journal of Ecology and Environment
    • /
    • v.37 no.1
    • /
    • pp.1-11
    • /
    • 2014
  • To understand the effects of fluctuations in dam discharge due to river environments and phytoplankton communities, we monitored such environments and phytoplankton communities biweekly, from February 2001 to February 2002 and from February 2004 to February 2005, in the lower Han River (LHR), South Korea. The phytoplankton abundance during the dry season was approximately two times higher than that during the rainy season. In particular, fluctuations in diatom assemblages, which constituted over 70% of the total phytoplankton abundance, were affected severely by the changes in the discharge. When a large quantity of water in a dam was discharged into the LHR, the conductivity and the concentrations of total nitrogen (TN), total phosphorus (TP), and dissolved inorganic phosphorus (DIP) decreased rapidly, whereas the concentrations of suspended solids (SS), dissolved inorganic nitrogen (DIN), and dissolved silica (DSi) increased immediately. Time-delayed relationship also revealed that the dam discharge had an immediately significant negative relationship with phytoplankton abundance. On the whole, fluctuations in phytoplankton communities in the LHR were influenced much more by hydrodynamics such as dam discharge than by the availability of nutrients. Thus, the variability in these concentrations usually parallels the strength of river flow that is associated with summer rainfall, with higher values during periods of high river discharge.

Preparation and antimicrobial assay of ceramic brackets coated with TiO2 thin films

  • Cao, Shuai;Wang, Ye;Cao, Lin;Wang, Yu;Lin, Bingpeng;Lan, Wei;Cao, Baocheng
    • The korean journal of orthodontics
    • /
    • v.46 no.3
    • /
    • pp.146-154
    • /
    • 2016
  • Objective: Different methods have been utilized to prevent enamel demineralization and other complications during orthodontic treatment. However, none of these methods can offer long-lasting and effective prevention of orthodontic complications or interventions after complications occur. Considering the photocatalytic effect of $TiO_2$ on organic compounds, we hoped to synthesize a novel bracket with a $TiO_2$ thin film to develop a photocatalytic antimicrobial effect. Methods: The sol-gel dip coating method was used to prepare $TiO_2$ thin films on ceramic bracket surfaces. Twenty groups of samples were composed according to the experimental parameters. Crystalline structure and surface morphology were characterized by X-ray diffraction and scanning electron microscopy, respectively; film thickness was examined with a surface ellipsometer. The photocatalytic properties under ultraviolet (UV) light irradiation were analyzed by evaluating the degradation ratio of methylene blue (MB) at a certain time. Antibacterial activities of selected thin films were also tested against Lactobacillus acidophilus and Candida albicans. Results: Films with 5 coating layers annealed at $700^{\circ}C$ showed the greatest photocatalytic activity in terms of MB decomposition under UV light irradiation. $TiO_2$ thin films with 5 coating layers annealed at $700^{\circ}C$ exhibited the greatest antimicrobial activity under UV-A light irradiation. Conclusions: These results provide promising guidance in prevention of demineralization by increasing antimicrobial activities of film coated brackets.

Preparation of Hydrophilic Coating Films by using of Aminosilane and Colloidal Silica (아미노실란과 콜로이드 실리카를 이용한 친수성 코팅 도막의 제조)

  • Ah, Chi-Yong;Lee, Byoung-Hwa;Song, Ki Chang
    • Korean Chemical Engineering Research
    • /
    • v.55 no.2
    • /
    • pp.247-252
    • /
    • 2017
  • Hydrophilic coating solutions were prepared by reacting a silane coupling agent, aminosilane with colloidal silica (15~20 nm in diameter). Hydrophilic coating films were also obtained by depositing the hydrophilic coating solutions on polycarbonate substrates by dip-coating and subsequently by thermal curing at $120^{\circ}C$. During this process, the effect of types of aminosilane was studied on the properties of coating films. As a result, coating films, prepared with 3-aminopropyltriethoxysilane (APTES) as aminosilane, showed contact angles of $25{\sim}44^{\circ}$ and a poor pencil hardness of B. On the other hand, coating films, prepared with 3-aminopropyltrimethoxysilane (APTMS) as aminosilane, exhibited contact angles of $26{\sim}37^{\circ}$ and a good pencil hardness of 2H.

Effects of Mild Heat and Organic Acid Treatments on the Quality of 'Daebo' Peeled Chestnut during Storage (열수 및 유기산 처리가 '대보' 박피밤의 저장 시 품질에 미치는 영향)

  • Oh, Sung-Il;Kim, Mahn-Jo
    • Journal of Korean Society of Forest Science
    • /
    • v.104 no.1
    • /
    • pp.84-89
    • /
    • 2015
  • The effects of dip treatments of chemicals (ascorbic acid, citric acid, calcium chloride: 1% solution) and physicals (vacuum packing, $50^{\circ}C$ distilled water) on the browning and quality of 'Daebo' peeled chestnut were studied. During the storage, the surface color of the samples showed higher ${\Delta}E$ values and lower L values than that of the initial sample. The color with the normal packing treatment hardly changed, unlike in the chemical and physical treatments. The calcium chloride treatment showed less color change than other treatments. The marketable quality was maintained for 10 days with the normal packing and for 35 days with the chemical and physical treatments. Thus, the chemical and physical treatments, especially with vacuum packing after 1% calcium chloride treatment, extended the shelf-life of the 'Daebo' peeled chestnut by inhibiting the browning.

Improvement of Cooling Technology through Atmosphere Gas Management

  • Renard, Michel;Dosogne, Edgar;Crutzen, Jean-Pierre;Raick, Jean-Marc;Ma, Jia Ji;Lv, Jun;Ma, Bing Zhi
    • Corrosion Science and Technology
    • /
    • v.8 no.6
    • /
    • pp.217-222
    • /
    • 2009
  • The production of advanced high strength steels requires the improvement of cooling technology. The use of high cooling rates allows relatively low levels of expensive alloying additions to ensure sufficient hardenability. In classical annealing and hot-dip galvanizing lines a mixing station is used to provide atmosphere gas containing 3-5% hydrogen and 97-95% nitrogen in the various sections of the furnace, including the rapid cooling section. Heat exchange enhancement in this cooling section can be insured by the increased hydrogen concentration. Drever International developed a patented improvement of cooling technology based on the following features: pure hydrogen gas is injected only in the rapid cooling section whereas the different sections of the furnace are supplied with pure nitrogen gas; the control of flows through atmosphere gas management allows to get high hydrogen concentration in cooling section and low hydrogen content in the other furnace zones. This cooling technology development insures higher cooling rates without additional expensive hydrogen gas consumption and without the use of complex sealing equipments between zones. In addition reduction in electrical energy consumption is obtained. This atmosphere control development can be combined with geometrical design improvements in order to get optimised cooling technology providing high cooling rates as well as reduced strip vibration amplitudes. Extensive validation of theoretical research has been conducted on industrial lines. New lines as well as existing lines, with limited modifications, can be equipped with this new development. Up to now this technology has successfully been implemented on 6 existing and 7 new lines in Europe and Asia.

Deformation behavior of tunnels crossing weak zone during excavation - numerical investigation (연약대를 통과하는 터널의 시공중 변위거동 - 수치해석 연구)

  • Yoo, Chungsik;Park, Jung-Gyu
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.16 no.4
    • /
    • pp.373-386
    • /
    • 2014
  • This paper concerns the deformation behavior of tunnels crossing weak zone during excavation. A three dimensional finite element model was adopted in order to conduct a parametric study on the orientation of weaj zone in terms of strike and dip angle relative to the tunnel longitudinal axis. The results of the analyses were then analyzed so that the tunnel displacements in terms of the ratios between the crown settlement and springline displacement can be related to the orientation of the weak zone. The results indicate that the displacement ratios between the tunnel crown and springline tend to quantitatively change when a weak zone exists near or ahead of the tunnel suggesting that the displacement ratios can be effectively used to predict the weak zone during tunnelling. Practical implications of the findings are discussed.

The Effects of Surface Insulation Layer on the Magnetic Properties of Nanocrystalline Alloy Ribbons (표면 절연층이 나노결정립 합금 리본의 자기적 특성에 미치는 영향)

  • Oh, Young-Woo
    • Journal of the Korean Magnetics Society
    • /
    • v.17 no.6
    • /
    • pp.226-231
    • /
    • 2007
  • High frequency loss property of nanocrystalline amorphous ribbon with a high resistivity insulation layer of $TiO_2$ and $SiO_2$ was studied. The insulation layer was fabricated by sol-gel method using dip-coating. The optimum composition ratio of metal alkoxide and slurry for fabrication of insulation layer was established and insulation layer with high adhesion was coated on the nanocrystalline amorphous ribbon. Frequency loss of magnetic core material manufactured on nanocrystalline amorphous ribbon with the surface insulation layer decreased over 40 % compared with that of magnetic core material without surface insulation layer. The insertion loss of an inductive coupler, which was prepared by using magnetic core material coated insulation layer, decreased due to reduction of frequency loss for magnetic core material and insertion loss decreased in proportion to frequency.

Experimental Study on Load Transfer Characteristic by Adjacent Slope Excavation in a Jointed Rock Mass (절리암반에서 근접 사면굴착에 의한 하중전이특성에 대한 실험적 연구)

  • Lee, Jin-Wook;Lee, Sang-Duk
    • Journal of the Korean Society for Railway
    • /
    • v.12 no.2
    • /
    • pp.321-328
    • /
    • 2009
  • A optimal reinforcement in the joint rock slope excavation adjacent to an existing tunnel would be influenced by excavation distance from the tunnel, slope angel, and joint conditions but has been empirically determined so far. In this study, large scale model tests were conducted to find out the relationship between load translation on the excavation surface and bebavior of the tunnel according to excavation steps of the jointed rock slope. Consequently, two main parameters, joint dip and sloped angle were investigated in those model tests. From the test results, it was found that tunnel deformation was the largest one when the excavation of joints located closer to the tunnel crown or invert. Stability of the slope and the tunnel were varied in a certain excavation stage related to the angle of slope. In the future, based on results of this study the reinforcement method for the tunnel and slope safety in a jointed rock mass will be demonstrated.