• Title/Summary/Keyword: Dioxygenase

Search Result 198, Processing Time 0.023 seconds

Characterization of flavone synthase I from rice

  • Lee, Yoon-Jung;Kim, Jeong-Ho;Kim, Bong-Gyu;Lim, Yoong-Ho;Ahn, Joong-Hoon
    • BMB Reports
    • /
    • v.41 no.1
    • /
    • pp.68-71
    • /
    • 2008
  • Flavones are synthesized from flavanones through the action of flavone synthases (FNSs). There are two FNSs, FNS I and II. FNS I is a soluble dioxygenase present in members of the Apiaceae family and FNS II is a membrane bound cytochrome P450 enzyme that has been identified in numerous plant species. In this study, we cloned OsFNS I-1 from rice by RTPCR, expressed it in E. coli, and purified the recombinant protein. By NMR analysis, we found that OsFNS I-1 converted the flavanone (2S)-naringenin into the flavone, apigenin. Moreover, we found that the cofactors oxoglutarate, $FeSO_4$, ascorbate and catalase are required for this reaction. OsFNS I-1 encodes a flavone synthase I. This is the first type I FNS I found outside of the Apiaceae family.

SF3B4 as an early-stage diagnostic marker and driver of hepatocellular carcinoma

  • Shen, Qingyu;Nam, Suk Woo
    • BMB Reports
    • /
    • v.51 no.2
    • /
    • pp.57-58
    • /
    • 2018
  • An accurate diagnostic marker for detecting early-stage hepatocellular carcinoma (eHCC) is clinically important, since early detection of HCC remarkably improves patient survival. From the integrative analysis of the transcriptome and clinicopathologic data of human multi-stage HCC tissues, we were able to identify barrier-to-autointegration factor 1 (BANF1), procollagen-lysine, 2-oxoglutarate 5-dioxygenase 3 (PLOD3) and splicing factor 3b subunit 4 (SF3B4) as early HCC biomarkers which could be detected in precancerous lesions of HCC, with superior capabilities to diagnose eHCC compared to the currently popular HCC diagnostic biomarkers: GPC3, GS, and HSP70. We then showed that SF3B4 knockdown caused G1/S cell cycle arrest by recovering $p27^{kip1}$ and simultaneously suppressing cyclins, and CDKs in liver cancer cells. Notably, we demonstrated that aberrant SF3B4 overexpression altered the progress of splicing progress of the tumor suppressor gene, kruppel like factor 4 (KLF4), and resulted in non-functional skipped exon transcripts. This contributes to liver tumorigenesis via transcriptional inactivation of $p27^{kip1}$ and simultaneous activation of Slug genes. Our results suggest that SF3B4 indicates early-stage HCC in precancerous lesions, and also functions as an early-stage driver in the development of liver cancer.

Structure and Properties of a Nonheme Pentacoordinate Iron(II) Complex with a Macrocyclic Triazapyridinophane Ligand

  • You, Minyoung;Seo, Mi Sook;Kim, Kwan Mook;Nam, Wonwoo;Kim, Jinheung
    • Bulletin of the Korean Chemical Society
    • /
    • v.27 no.8
    • /
    • pp.1140-1144
    • /
    • 2006
  • A macrocyclic ligand, N,N',N'-tribenzyl-2,11,20-triaza[3,3,3](2,6)pyridinophane (BAPP), was used to prepare an iron(II) complex as a nonheme model complex, $[(BAPP)Fe]^{+2}$ (1). X-ray crystallography of a colorless crystal of 1 revealed that BAPP acted as a pentadentate ligand due to geometrical strain for the formation of a six-coordinate iron(II) complex by BAPP. As a result, the iron center revealed a significantly distorted square pyramidal geometry similar to that found in the active site of taurine dioxygenase (tauD). In the reaction of 1 with PhIO, no intermediate was observed in the UV-visible region of spectrometer at low temperatures. Catalytic oxidations of triphenyl phosphine with PhIO at ${-40^{\circ}C}$ revealed that 1 was able to convert triphenyl phosphine to triphenyl phosphine oxide.23; SSOCHKThioanisole was also oxidized to the corresponding methylphenyl sulfoxide under the same conditions.

Enzymes of White-rot Fungi Cooperate in Biodeterioration of Lignin Barrier (목질리그닌의 생물학적 분해시 백색 부후균류 효소들의 상호작용)

  • Leonowicz, Andrzej;Cho, Nam-Seok;Wasilewska, Maria W.;Rogalski, Jerzy;Luterek, Jolanta
    • Journal of the Korean Wood Science and Technology
    • /
    • v.25 no.2
    • /
    • pp.1-20
    • /
    • 1997
  • 목재를 분해시키는 담자균류들은 목재 및 목질복합체에 쉽사리 침투하여 복잡한 리그노셀룰로오스 복합체를 분해시킨다. 이러한 분해에는 많은 효소시스템들이 복합적으로 작용하면서 상호 협동하는 것으로 보고되고 있다. 지금까지 일려진 효소들은 통상 3개의 그룹으로 나눌 수 있는데 그 하나는 목재성분을 직접적으로 공격하는 효소균들, 예를 들면 cellulase complex, laccase(LAC), lignin peroxidase(LIP), horse-radish peroxidase(HRP), manganese-independent peroxidase(MIP) 및 protocatechuate 3,4-dioxygenase(PCD) 등이 있고, 두번째 그룹으로서 manganese-dependent peroxidase(MnP), aryl alcohol oxidase(AAO) 및 glyoxal oxidase(GLO) 등인데, 이들 효소들은 목질을 직접적으로 공격하지 않고 제1그룹의 효소들과 협동하여 작용하는 것으로 알려지고 있다. 제3그룹의 효소들은 glucose oxidase(GOD) 및 cellobiose : quinone oxidoreductase(CBQ)로서 feedback type의 효소들로서 목재고분자의 분해시 대사의 고리를 결합시켜 주는 매우 중요한 기능을 하는 효소군들이다. 그러나 이 이외에도 다른 분해기구가 밝혀지고 있으며 기타 효소들에 의한 리그노셀룰로오스의 분해반응기구의 해명에는 상당한 시간이 걸릴 것으로 사료된다.

  • PDF

Inhibition of Prolyl 4-Hydroxylase by Oxaproline Tetrapeptides In Vitro and Mass Analysis for the Enzymatic Reaction Products

  • Moon Hong-sik;Begley Tedhg P.
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.5 no.1
    • /
    • pp.61-64
    • /
    • 2000
  • A series of 5-oxaproline peptide derivatives was synthesized and evaluated for its ability to inhibit the prolyl 4-hydroxylase in vitro. Structure-activity studies show that the 5-oxaproline sequences, prepared by the 1,3-dipolar cycloaddition of the C-methoxycarbonyl-N-mannosyl nitrone in the presence of the ethylene, are more active than the corresponding proline derivatives. Prolyl 4-hydroxylase belongs to a family of $Fe^{2+}-dependent$ dioxygenase, which catalyzes the formation of 4-hydroxyproline in collagens by the hydroxylation of proline residues in -Gly-Xaa-Pro-Gly- of procollagen chains. In this paper we discover the more selective N-Cbz-Gly-Phe-Pro-Gly-OEt $(K_m\;=\;520\;{\mu}M)$ sequences which are showed stronger binding than others in vitro. Therefore, we set out to investigate constrained tetrapeptide that was designed to mimic the proline structure of pep tides for the development of prolyl 4-hydroxylase inhibitor. From this result, we found that the most potent inhibitor is N-Dansyl-Gly-Phe-5-oxaPro-Gly-OEt $(K_i\;=\;1.6\;{\mu}M)$. This has prompted attempts to develop drugs which inhibit collagen synthesis. Prolyl 4-hydroxylase would seem a particularly suitable target for antifibrotic therapy.

  • PDF

Characterization of Trichloroethylene and Phenol Degradation by Acinetobaeter sp. T5-7 (Acinetobacter sp. T5-7에 의한 Phenol과 Trichloroethylene 분해특성)

  • Hong, Sung-Yong;Lee, Suk-Hee;Lee, Jung-Hae;Ha, Ji-Hong
    • Microbiology and Biotechnology Letters
    • /
    • v.23 no.3
    • /
    • pp.255-262
    • /
    • 1995
  • Intact cells of Acinetobacter sp. T5-7 completely degraded trichloroethylene (TCE) following growth with phenol. This strain could grow on at least eleven aromatic compounds, e.g., benzaldehyde, benzene, benzoate, benzylalochol, catechol, caffeic acid, 2.4-D, p-hydroxybenzoate, phenol, protocatechuate and salicylate, and did grow on alkane, such as octane. But except phenol, other aromatic compounds did not induced TCE degradation. Phenol biotransformation products, catechol was identified in the culture media. However, catechol-induced cells did not degrade TCE. So we assumed that phenol hydroxylase was responsible for the degradation of TCE. The isolate T5-7 showed growth in MM2 medium containing sodium lactate and catechol rather than phenol, but did not display phenol hydroxyalse activity, suggesting induction of enzyme synthesis by phenol. Phenol hydroxylase activity was independent of added NADH and flavin adenine dinucleotide but was dependent on NADPH addition. Degradation of phenol produced catechols which are then cleaved by meta-fission. We identified catechol-2.3-dioxygenase by active staining of polyacrylamide gel.

  • PDF

Cloning and Sequence Analysis of the xyIL Gene Responsible for 4CBA-Dihydrodiol Dehydrogenase from Pseudomonas sp. S-47

  • 박동우;이상만;가종옥;김지경
    • Korean Journal of Microbiology
    • /
    • v.38 no.4
    • /
    • pp.275-275
    • /
    • 2002
  • Pseudomonas sp. S-47 is capable of catabolizing 4-chlorobenzoate (4CBA) as carbon and energy sources under aerobic conditions via the mesa-cleavage pathway. 4CBA-dioxygenase and 4CBA-dihydrodiol dehydrogenase (4CBA-DD) catalyzed the degradation af 4CBA to produce 4-chlorocatechol in the pathway. In this study, the xylL gene encoding 4CBA-DD was cloned from the chromosomal DNA of Pseudomonas sp. S-47 and its nucleotide sequence was analyzed. The xylL gene was found to be composed of 777 nucleotide pairs and to encode a polypeptide of 28 kDa with 258 amino acid residues. The deduced amino acid sequence of the dehydrogenase (XylL) from strain S-47 exhibited 98% and 60% homologies with these of the corresponding enzymes, Pseudomonas putida mt-2 (XyIL) and Acinetobacter calcoaceticus (BenD), respectively. However, the amino arid sequences show 30% or less homology with those of Pseudomonas putida (BnzE), Pseudomonas putida Fl (TodD), Pseudomonas pseudoalcaligenes KF707 (BphB), and Pseudomonas sp. C18 (NahB). Therefore, the 4CBA-dihydrodiol dehdrogenase of strain S-47 belongs to the group I dehydrogenase involved in the degradation of mono-aryls with a carboxyl group.

Improved Degradation of 4-Chlorobiphencyl, 2,3-Dihydroxybiphenyl, and Catecholic Compounds by Recombinant Bacterial Strains

  • Kim, Ji-Young;Kim, Youngsoo;Lee, Kyoung;Kim, Chi-Kyung
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.6 no.1
    • /
    • pp.56-60
    • /
    • 2001
  • The pcbC gene encoding (4-chloro-)2,3-dihydroxybiphenyl dioxygenase was cloned from the genomic DNA of Pseudomonas sp. P20 using pKT230 to construct pKK1. A recombinant strain, E. coli KK1, was selected by transforming the pKK1 into E. coli XL1-Blue. Another recombinant strain, Pseudomonas sp. DJP-120, was obtained by transferring the pKK1 of E. coli KK1 into Pseudomonas sp. DJ-12 by conjugation. Both recombinant strains showed a 23.7 to 26.5 fold increase in the degradation activity to 2,3-dihydroxybiphenyl compared with that of the natural isolate, Pseudomonas sp. DJ-12. The DJP-120 strain showed 24.5, 3.5, and 4.8 fold higher degradation activities to 4-chlorobiphenyl, catechol, and 3-methylcatechol than DJ-12 strain, respectively. The pKK1 plasmid of both strains and their ability to degrade 2,3-dihydroxybiphenyl were stable even after about 1,200 generations.

  • PDF

Isolation and Characterization of a Phenol-Degrading Strain Acinetobacter sp.GEM2 (Phenol을 분해하는 Acinetobacter sp. GEM2의 분리 및 특성)

  • Lee, Chang-Ho;Oh, Hee-Mock;Kwon, Tae-Jong;Kwon, Gi-Seok;Lee, Sung-Gie;Suh, Hyun-Hyo;Yoon, Byung-Dae
    • Microbiology and Biotechnology Letters
    • /
    • v.22 no.6
    • /
    • pp.692-699
    • /
    • 1994
  • A bacterial strain which formed a distinct colony on agar plate containing phenol as a vapor phase and grew well in a liquid minimal medium was isolated and identified as Acinetobac- ter sp. GEM2. The optimal temperature and initial pH for the growth of Acinetobacter sp. GEM2 were 30$\circ$C and 7.0, respectively. Cell growth was inhibited by phenol at the concentration over 1500 ppm. Cell growth dramatically increased from 10 hours after cultivation and almost showed a stationary phase within 24 hours at which 95% of phenol was concomitantly degraded. Acinetobac- ter sp. GEM2 was capable of growing on aromatic compounds, such as benzoic acid, phenol, m- cresol, o-cresol, P-cresol, catechol, gentisic acid, and toluene, but did not grow on benzene, salicylic acid, p-toluic acid, and p-xylene. By the analysis of catechol dioxygenase, it seemed that catechol was degraded through both meta- and ortho-cleavage pathway. The growth-limiting log P value of Acinetobacter sp. GEM2 on organic solvents was 2.0.

  • PDF

DNA Demethylation of the Foxp3 Enhancer Is Maintained through Modulation of Ten-Eleven-Translocation and DNA Methyltransferases

  • Nair, Varun Sasidharan;Song, Mi Hye;Ko, Myunggon;Oh, Kwon Ik
    • Molecules and Cells
    • /
    • v.39 no.12
    • /
    • pp.888-897
    • /
    • 2016
  • Stable expression of Foxp3 is ensured by demethylation of CpG motifs in the Foxp3 intronic element, the conserved non-coding sequence 2 (CNS2), which persists throughout the lifespan of regulatory T cells (Tregs). However, little is known about the mechanisms on how CNS2 demethylation is sustained. In this study, we found that Ten-Eleven-Translocation (Tet) DNA dioxygenase protects the CpG motifs of CNS2 from re-methylation by DNA methyltransferases (Dnmts) and prevents Tregs from losing Foxp3 expression under inflammatory conditions. Upon stimulation of Tregs by interleukin-6 (IL6), Dnmt1 was recruited to CNS2 and induced methylation, which was inhibited by Tet2 recruited by IL2. Tet2 prevented CNS2 re-methylation by not only the occupancy of the CNS2 locus but also by its enzymatic activity. These results show that the CNS2 methylation status is dynamically regulated by a balance between Tets and Dnmts which influences the expression of Foxp3 in Tregs.