• Title/Summary/Keyword: Diode Detector

Search Result 280, Processing Time 0.04 seconds

Basic Study of the Improvement of PSD Output by Inclined Light Input (PSD의 출력특성향상을 위한 경사 입력광의 특성해석에 대한 기본연구)

  • Kweon, Hyun-Kyu;Park, Chang-Yong
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.9 no.4
    • /
    • pp.53-58
    • /
    • 2010
  • In this paper, the output characteristics of PSD(Position Sensetive Detector) used in measurement system are described. Most of the precision measurment systems are accomplished by a laser diode(LD), a photo diode(PD) and PSD(Position Sensetive Detector), which are used in reflection of mirror or projection of infrared spectrometer. But it is especially restricted by resolution of PD and PSD in nano-measurement. A new inclined light methods into the PSD are employed in the surface measurement system for increasing the resolution. As the results, we can know that the output characteristics of detective senser (PSD) become more than 2 or 3 times by changing inclined angle(range: 5 degree) compared with common angle. In addition, the experiment results are confirmed that the change of inclined angle is not affecting to the linearity and repeating.

Absolute Positioning System of Mobile Robot using Light Navigation Path (광궤도를 이용한 이동로봇의 절대위치 보정 시스템)

  • 박용택;정효용;국금환
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.10
    • /
    • pp.141-147
    • /
    • 2003
  • This paper represents an absolute positioning system using a light navigation path for mobile robot. The absolute positioning system is composed of the projector unit which generates a laser beam using laser diode and mobile robot with the optical detector which has some optical sensors. The projector unit is fixed over the navigating plane of mobile robot to generate the light navigation path, and the optical detector located upper part of mobile robot detects the generated laser beam from the projector. The navigation of mobile robot is controlled by the micro-processor which compares the detected present position from the detector with the previously programmed navigation path. And experimental results show that our sensor system can be used for the absolute positioning system of the mobile robot.

Design and Implementation of L/Ku-band Broadband Power Detector using Schottky Diode (Schottky 다이오드를 이용한 Six-port용 L/Ku-band 광대역 Power detector 설계 제작)

  • Kim Young-Wan
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2006.05a
    • /
    • pp.615-618
    • /
    • 2006
  • The broadband power detector for direct- onversion Six-port output circuit was designed and implementaed in this paper. The power detector should linearly operated to produce the linear amplitude and phase signal fer input RF signal in required broadband. So, the power detector should be designed under conditions of matching circuit with low VSWR. The designed power detectors, which were implemented in L-band with 50 ohm matching and Ku-band with matching circuit and isolator, respectively, were evaluated in the performances.

  • PDF

Development of Prototype Electronic Dosimeter using the Silicon PIN Diode Detector (실리콘 PIN 다이오드 검출기를 이용한 전자선량계 개발)

  • Lee, B.J.;Kim, B.H.;Chang, S.Y.;Kim, J.S.
    • Journal of Radiation Protection and Research
    • /
    • v.25 no.4
    • /
    • pp.197-205
    • /
    • 2000
  • A prototype electronic dosimeter(PED) adopting a silicon PIN diode detector as a radiation detector has been developed, manufactured and test-evaluated. A radiation signal processing circuit has been electronically tested and then the radiation detection characteristics of this PED has been performance-tested by using a reference photon radiation field. As a result in a electronic performance test, radiation signals from a detector were well observed in the signal processing circuit. The radiation detection sensitivity of this PED after several test-irradiations to $^{137}Cs$ gamma radiation source appeared to be 1.85 cps/$Gy{\cdot}h^{-1}$ with 19.3% of the coefficient of variation, which satisfied the performance criteria for the active personnel radiation monitor. Further improvement of the electronic circuit and operating program will enable the PED to be used in personal monitoring purpose.

  • PDF

Design of n Miniaturized LTCC Power Detector for the Tx Power Control in Wireless Communication System (무선통신시스템 송신측 제어를 위한 초소형 LTCC 전력검출부의 설계)

  • Hwang, Mun-Su;Lim, Jong-Sik;Yang, Gyu-Ryeol;Ahn, Dal
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.9 no.3
    • /
    • pp.621-627
    • /
    • 2008
  • This paper presents a compact and miniaturized power detector utilizing low temperature co-fired ceramics(LTCC) technology for the application in wireless handset system to monitor the transmitting power at the frequency of 824-849MHz. The proposed power detector is composed of detector diode, lumped components for matching network, and LTCC stripline coupler based on LTCC substrate technology. A 20dB LTCC stripline direction coupler is designed and implemented with many bending section in order to reduce the practically occupied area for miniaturization. A zero bias schottky diode is adopted for detector design because of its high speed operation with minimized loss. The measured performances of fabricated detector agree well with the predicted results with a good linearity within the effective input RF power range.

Development of Laser Diode Tester and Position Compensation using Feedback with Machine Vision (Laser Diode Tester 개발과 비젼 피드백을 이용한 위치 보정)

  • 김재희;유철우;박상민;유범상
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.13 no.4
    • /
    • pp.30-36
    • /
    • 2004
  • The development of LD(Laser Diode) tester and its control system based on the graphical programming language(LabVIEW) is addressed. The ill tester is used to check the optic power and the optic spectrum of the LD Chip. The emitter size of LD chip and the diameter of the Detector(optic fiber and photo diode) are very small, therefore the test device needs high accuracy. But each motion part of the test device could not accomplish high accuracy due to the limit of the mechanical performance. So, an image processing with machine vision is proposed to compensate for the error. By adopting our method we can reduce the error of position within $\pm$5$\mu\textrm{m}$.

Feasibility of a Linear Diode Array Detector for Commissioning of a Radiotherapy Planning System

  • Seung Mo Hong;Uiseob Lee;Sung-woo Kim;Youngmoon Goh;Min-Jae Park;Chiyoung Jeong;Jungwon Kwak;Byungchul Cho
    • Progress in Medical Physics
    • /
    • v.34 no.1
    • /
    • pp.1-9
    • /
    • 2023
  • Purpose: Although ionization chambers are widely used to measure beam commissioning data, point-by-point measurements of all the profiles with various field size and depths are time-consuming tasks. As an alternative, we investigated the feasibility of a linear diode array for commissioning a treatment planning system. Methods: The beam data of a Varian TrueBeam® radiotherapy system at 6 and 10 MV with/without a flattening filter were measured for commissioning of an Eclipse Analytical Anisotropic Algorithm (AAA) ver.15.6. All of the necessary beam data were measured using an IBA CC13 ionization chamber and validated against Varian "Golden Beam" data. After validation, the measured CC13 profiles were used for commissioning the Eclipse AAA (AAACC13). In addition, an IBA LDA-99SC linear diode array detector was used to measure all of the beam profiles and for commissioning a separate model (AAALDA99). Finally, the AAACC13 and AAALDA99 dose calculations for each of the 10 clinical plans were compared. Results: The agreement of the CC13 profiles with the Varian Golden Beam data was confirmed within 1% except in the penumbral region, where ≤2% of a discrepancy related to machine-specific jaw calibration was observed. Since the volume was larger for the CC13 chamber than for the LDA-99SC chamber, the penumbra widths were larger in the CC13 profiles, resulting in ≤5% differences. However, after beam modeling, the penumbral widths agreed within 0.1 mm. Finally the AAALDA99 and AAACC13 dose distributions agreed within 1% for all voxels inside the body for the 10 clinical plans. Conclusions: In conclusion, the LDA-99SC diode array detector was found to be accurate and efficient for measuring photon beam profiles to commission treatment planning systems.

Feasibility Study of the microDiamond Detector for Measurement of Small Field Photon Beam (광자선 소조사면 선량측정을 위한 microDiamond 검출기의 유용성 고찰)

  • Lee, Chang Yeol;Kim, Woo Chul;Kim, Hun Jeong;Ji, Young Hoon;Kim, Kum Bae;Lee, Sang Hoon;Min, Chul Kee;Jo, Gwang Hwan;Shin, Dong Oh;Kim, Seong Hoon;Huh, Hyun Do
    • Progress in Medical Physics
    • /
    • v.25 no.4
    • /
    • pp.255-263
    • /
    • 2014
  • The dosimetry of very small fields is challenging for several reasons including a lack of lateral electronic equilibrium, large dose gradients, and the size of detector in respect to the field size. The objective of this work was to evaluate the suitability of a new commercial synthetic diamond detector, namely, the PTW 60019 microDiamond, for the small field dosimetry in cyberknife photon beams of 6 different collimator size (from 5 mm to 30 mm). Measurements included dose linearity, dose rate dependence, output factors (OF), percentage depth doses (PDD) and off center ratio (OCR). The results were compared to those of pinpoint ionization chamber, diamond detector, microLion liquid Ionization chamber and diode detector. The dose linearity results for the microDiamond detector showed good linearly proportional to dose. The microDiamond detector showed little dose rate dependency throughout the range of 100~600 MU/min, while microLion liquid Ionization chamber showed a significant discrepancy of approximately 5.8%. The OF measured with microDiamond detector agreed within 3.8% with those measured with diode. PDD curves measured with silicon diode and diamond detector agreed well for all the field sizes. In particular, slightly sharper penumbras are obtained by the microDiamond detector, indicating a good spatial resolution. The results obtained confirm that the new PTW 60019 microDiamond detector is suitable candidate for application in small radiation fields dosimetry.