• 제목/요약/키워드: Dimethyl Carbonate

검색결과 57건 처리시간 0.033초

직접분사식 디젤기관에서 함산소연료 첨가에 의한 매연과 NOx 동시 저감에 관한 실험적 연구 (An Experimental Study on the Simultaneous Reduction of Smoke and NOx by Oxygenated Fuel Additives in DI Diesel Engine)

  • 오영택
    • 한국자동차공학회논문집
    • /
    • 제4권2호
    • /
    • pp.106-114
    • /
    • 1996
  • Extensive experiments were conducted to investigate the emission of DI diesel engine by using DMC(dimethyl carbonate) as an oxygenated fuel additives. The results indicate that smoke reduces almost linearly with fuel oxygen contents. Reductions of HC and CO were attained noticeably, while a small increase in NOx was encountered concurrently. The effective reduction in smoke with DMC was maintained with the presence of CO2, which suggested a low NOx and smoke operation could be obtained in combination of using oxygenated fuel and EGR. Further experiment was conducted a thermal cracking set-up for mechanism studies.

  • PDF

Stilbenquinone이 도핑된 고분자 박막의 전자 이동도 (Electron Drift Mobility in Stilbenquinone-Doped Polymer Film)

  • 조종래;정재훈;손세모;김강언;정수태
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2001년도 하계학술대회 논문집
    • /
    • pp.870-873
    • /
    • 2001
  • The electron drift mobilitity of poly(4,4'-cyclohexylidenediphenyl carbonate)(PC-Z) doped with 3,5-dimethyl-3',5'-di-t-butylstilbenequinone(MBSQ) was measured by the time-of-flight technique. Energy gap of the polymer doped with 25wt% of MBSQ was 3.1 eV. The electron drift mobility was 2.98${\times}$10$\^$-6/$\textrm{cm}^2$/V$.$s at 293K. The electric field and temperature dependences of the electron drift mobility were discussed with Poole-Frenkel and Arrhenius formulations. The activation energy(E$\_$0/), Poole-Frenkel coefficient(${\beta}$) and effective temperature(T$\_$eff/) of the mobility are 0.815 eV, 1.73${\times}$10$\_$-4/ eV$.$cm$\^$1/2//V$\_$1/2/ and 6.43${\times}$10$^2$K, respectively.

  • PDF

재활용 소재를 활용한 친환경 노출형 폴리우레탄 도막방수재 개발에 관한 연구 (A Research on Development of Eco-friendly Polyurethane Waterproofing Membrane Coating of Exposed Type)

  • 김동범;허능회;오제곤;고건웅;고장렬
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2014년도 추계 학술논문 발표대회
    • /
    • pp.161-162
    • /
    • 2014
  • The subject of this study, Eco-friendly Polyurethane Waterproofing Membrane Coating of Exposed Type is manufactured by replacing environmental hazardous substance such as Toluene, Dioctyl Phthalate with Dimethyl Carbonate, waste-soybean oil. As part of existing filler is also replaced with waste-rubber chip and waste-soybean oil. As a result of environment friendly tests, in test of detection of VOCs case was contented with the Ministry of Environment standards at 5% below. Testing methods for heavy metal extracted was contented with standards for official wastes test method. So it is judged that environment friendly is secured.

  • PDF

The Simulation and Control of the Reactive Distillation Process for Dimethylcarbonate(DMC) Production

  • Jang, Yong-Hee;Yang, Dae-Ryook
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2004년도 ICCAS
    • /
    • pp.1215-1220
    • /
    • 2004
  • Reactive distillation (RD) is a combination process where both separation and reaction are considered simultaneously in a single vessel. This kind of combination to enhance the overall performance is not a new attempt in the chemical engineering areas. The recovery of ammonia in the classic Solvay process for soda ash of the 1860s may be cited as probably the first commercial application of RD. The RD system has been used for a long time as a useful process and recently the importance of the RD is enlarged more and more. In addition to that, the application fields of RD are diversely diverged. To make the most of the characteristic of RD system, we must decide the best operating condition under which the process shows the most effective productivity and should decide the best control algorithm which satisfies an optimal operating condition. Phosgene which is a highly reactive chemical is used for the production of isocyanates and polycarbonates. Because it has high reactivity and toxicity, its utilization is increasingly burdened by growing safety measures to be adopted during its production. Dimethyl Carbonate (DMC) was proposed as a substitute of phosgene because it is non-toxic and environmentally benign chemical. In this study, RD is used for DMC production process and the transesterification is performed inside of column to produce DMC. In transesterification, the methanol and ethylene carbonate (EC) are used as the reactants. This process use homogeneous catalyst and the azeotrope exists between the reactant and product. Owing to azeotrope, we should use two distillation columns. For this DMC production process, we can suggest two configurations. One is EC excess process and the other is methanol excess process. From the comparison of steady state simulation results where the Naphtali-Sandholm algorithm is used, it showed the better performance to use the methanol excess process configuration than EC excess process. Then, the dynamic simulation was performed to be based on the steady state simulation results and the optimal control system was designed. In addition to that, the optimal operating condition was suggested from previous results.

  • PDF

Chemical Stability of Lithium Lanthanum Titanate (Li0.5La0.5TiO3) as a Solid Electrolyte for Lithium Secondary Batteries

  • 은영진;임완규;이원준
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2014년도 제46회 동계 정기학술대회 초록집
    • /
    • pp.202.1-202.1
    • /
    • 2014
  • 최근 대용량 에너지 저장장치로 사용하고자 하는 리튬-공기전지는 리튬 음극과 액체 전해질 사이의 화학적 불안정성이 문제가 되고 있다. 또한 리튬이온전지는 액체전해질의 사용으로 인해 폭발 등의 안정성 문제가 대두되고 있는 실정이다. 때문에 리튬-공기전지에서 리튬 음극을 액체 전해질로부터 보호할 수 있으며, 리튬이온전지의 액체전해질과 대체하였을 때 전극과도 안정한 고체전해질의 연구가 필요하다. 고체전해질은 구조적으로 crystalline, glassy, 폴리머로 나눌 수 있는데, 이 중 crystalline 구조의 고체전해질은 glassy 및 폴리머 고체전해질에 비해 상온에서 비교적 이온전도도가 높다고 알려져 있다 [1]. 그러나 이온전도도가 높은 황화물 및 질화물 고체전해질은 수분에 민감한 반면 [2,3], 산화물 계열의 물질은 안정할 것으로 예상된다. 본 연구에서는 이온전도도가 높은 산화물인 lithium lanthanum titanate ($Li_{0.5}La_{0.5}TiO_3$, LLTO)를 고체전해질로 선정하여 다양한 환경에서 화학적 안정성에 관해 연구하였다. LLTO와 각종 용액과의 화학적 안정성을 살펴보기 위해 고체전해질을 DI water, 1 M $LiPF_6$ Ethylene Carbonate (EC)-Dimethyl Carbonate (DMC) (50:50 vol.%), 0.57 M LiOH (pH=13), 0.1 M HCl (pH=1)에 immersion하고 무게, 표면형상, 상(phase), 이온전도도 등의 변화를 관찰하였다. 또한 LLTO와 전극간의 반응성을 알아보기 위해 LLTO 분말과 음극물질인 $Li_4Ti_5O_{12}$ 및 양극물질인 $LiCoO_2$ 분말을 혼합한 후 $300^{\circ}C{\sim}700^{\circ}C$의 온도범위에서 열처리하여 반응을 가속화 한 후 상변화 현상을 살펴보았다.

  • PDF

생분해성 고분자(PLGA)로 캡슐화한 Magnetite 나노입자의 제조 (Preparation of Magnetite Nanoparticles Encapsulated with Biodegradable Polymer (PLGA))

  • 이호석;정일엽;송기창;안양규;최은정
    • 한국자기학회지
    • /
    • 제16권1호
    • /
    • pp.107-110
    • /
    • 2006
  • Emulsification-diffusion법에 의해 magnetite를 생분해성 고분자인 PLCA로 캡슐화 시켜 magnetite/PLGA 복합분말을 제조하였다. 이때 유기용매의 종류 변화가 얻어진 복합분말의 크기에 미치는 영향을 살펴보기 위해 다양한 종류의 유기용매[ethyl acetate(EA), propylene carbonate(PC), acetone (ACE)]가 사용되었으며, 분말의 입도분포는 동적 광산란법에 의해 측정되었다. 물에 부분적으로 용해되는 용매인 EA나 PC가 사용되었을 경우에는 80nm이하의 작은 크기의 복합분말이 얻어진 반면, 물에 잘 용해되는 용매인 ACE가 사용되었을 경우에는 330nm 이상의 큰 복합분말이 얻어졌다.

Controlled Synthesis of FeSe2 Nanoflakes Toward Advanced Sodium Storage Behavior Integrated with Ether-Based Electrolyte

  • Chen, Yalan;Zhang, Jingtong;Liu, Haijun;Wang, Zhaojie
    • Nano
    • /
    • 제13권12호
    • /
    • pp.1850141.1-1850141.11
    • /
    • 2018
  • Sodium ion batteries based on the more sodium source reserve than that of lithium have been designed as promising alternatives to lithium ion batteries. However, several problems including unsatisfied specific capacity and serious cyclic stability must be solved before the reality. One of the effective approaches to solve the abovementioned problems is to search for suitable anode materials. In this work, we designed and prepared $FeSe_2$ nanoflakes via a simple hydrothermal method which can be adjusted in composition by Fe precursor. As a potential anode for sodium storage, the optimized $FeSe_2$ electrode was further evaluated in different electrolytes of $NaClO_4$ in propylene carbonate/fluoroethylene carbonate and $NaCF_3SO_3$ in diethylene glycol dimethyl ether. The capacity was about $470mAh\;g^{-1}$ and $535mAh\;g^{-1}$ at $0.5A\;g^{-1}$, respectively, in the voltage between 0.5 V and 2.9 V in the cycle of stabilization phase. Superior performance both in capacity and in stability was obtained in ether-based electrolyte, which affords the property without plugging the intermediates of transition metal dichalcogenides during charge/discharge processes.

염료태양전지용 고온안정성 전해질 (High Temperature Stable Eletrolyte for Dye Solar Cell)

  • 한치환;이학수
    • 한국태양에너지학회:학술대회논문집
    • /
    • 한국태양에너지학회 2009년도 춘계학술발표대회 논문집
    • /
    • pp.220-224
    • /
    • 2009
  • The effect of addition of single and binary additives on the performance of dye-sensitized $TiO_2$ solar cells based on 1,2-dimethyl-3-propylimidazolium iodide (DMPII) in ethylene carbonate (EC) and gamma-butyrolactone (GBL) has been evaluated at different cell temperatures in the $30-120^{\circ}C$ range. The electrolyte containing a single additive, 2-(dimethylamino)-pyridine (DMAP) showed best performance, which showed further enhancement for an electrolyte containing binary additives, DMAP and 5-chloro-1-ethyl-2-methylimidazole (CEMI) in equal molar ratio. The performance of the dye sensitized solar cell (DSC) based on electrolyte containing binary additives were found to be better than an acetonitrile based electrolyte. The dependence of different photovoltaic parameters (Voc, Jsc, ff, n) of the DSC upon temperature has been studied over the $30-120^{\circ}C$ range and only a small decrease in conversion efficiency has been observed. Thus the electrolyte containing binary additives (DMAP, CEMI) in EC/GBL solvent and show better performance in the investigated temperature range ($30-120^{\circ}C$).

  • PDF

Diesel 기관(機關)의 미립자(微粒子)와 NOX 동시저감(同時低減)에 관한 연구(硏究) (A Study on the Simultaneous Reduction of PM and NOX Emissions in Diesel Engines)

  • 오영택
    • 대한기계학회논문집B
    • /
    • 제22권9호
    • /
    • pp.1238-1246
    • /
    • 1998
  • Recently, the automobile industry has been faced with very serious problems related to the very restricted regulations of exhaust gas emissions. Therefore many researchers have been attracted to the development of oxygenated fuel for a solution to these problems. This paper deals with the effects of oxygenated fuel on exhaust emissions. An experimental study was conducted to investigate PM and $NO_X$ emission using dimethyl carbonate as an oxygenated fuel in a naturally aspirated DI diesel engine. With increased oxygenated fuel amounts. there were significant reductions in PM, HC and CO emissions mainly from depressed thermal cracking. while little increase in $NO_X$ was encountered concurrently. The effective reduction in PM with oxygenated fuel was maintained with the presence of $CO_2$. which suggested low $NO_X$ and PM obtained from the combination of using oxygenated fuel and cooled EGR. Thermal cracking and an analysis of the heat release rate were also studied in the experiment.

활성탄소계 섬유포 전극을 이용한 전기이중층 커패시터용 유기 전해액의 제조 (Fabrication of Organic Electrolytes for Electric Double Layer Capacitor with Activated Carbon Cloth Electrode)

  • 강안수
    • 대한안전경영과학회지
    • /
    • 제2권2호
    • /
    • pp.95-108
    • /
    • 2000
  • Electrochemical charateristics of activated carbon fiber cloth(ACFC) electrode were studied with propylene carbonate(PC), ${\gamma}$-butyrolactone(GBL) and N,N-dimethyl-formamide(DMF) as a solvent and tetraethylammoniumtetrafluoroborate(TEABF$_4$), tetraethylammoniumhexafluorophosphate(TEABF$_{6}$), tetrabutylammoniumtetrafluoroborate(TBABF$_4$) and tetrabutylammonium hexafluorophosphate(TBAPF$_6$) as an electrolytes(active material). The concentrations of electrolytes were in the range of 0.2~1.2 N, the volume ratios of PC and DMF as a mixed solvent system, were 90:10, 80:20, 70:30, 60:40, 50:50, and 40:60 vol%. Electrochemical characteristics such as electric conductivity, internal resistance, and electric capacitance of fabricated unit cells were measured after the moisture of activated material was removed with molecular sieve. Electrochemical characteristics were better in mixed solvents system than in mono solvent system. The mono solvent system of 1.0 N electrolyte of GBL/TEABF$_4$ with activated carbon cloth electrodes showed better result but the mixed solvent system with PC and DMF/TEABF$_4$(50:50 vol%) and the concentration of 1.0 N electrolyte showed the best characteristics. Internal resistance was 3.47 $\Omega$ and specific capacitance was 19.1 F/g respectively.y.

  • PDF