• Title/Summary/Keyword: Dimeric structure

Search Result 81, Processing Time 0.033 seconds

Structural basis of Shank PDZ interaction with the C-terminal peptide of GKAP protein and the mode of PDZ domain dimerization

  • Im, Young-Jun;Lee, Jun-Hyuck;Park, Seong-Ho;Park, Seong-Hwan;Park, Soo-Jeong;Kang, Gil-Bu;Kim, Eunjoon;Eom, Soo-Hyun
    • Proceedings of the Korea Crystallographic Association Conference
    • /
    • 2003.05a
    • /
    • pp.14-14
    • /
    • 2003
  • We have crystallized and determined the structures o the Shank PDZ domain, alone and in complex with the synthetic C-terminal hexapeptide of GKAP protein at resolutions of 1.8Å and 2.5Å, respectively. The structure revealed the structural basis of the ligand recongition by Class I PDZ-ligand interaction. Moreover, dimeric structureof shank PDZ domain suggests that the βA strand is a common surface for dimerization of PDZ domains.

  • PDF

Synthesis and Characterization of New Organotin (IV)-phenylenebisdithiocarbamate Complexes

  • Lee, Won-Ho;Jung, Ok-Sang;Sohn, Youn-Soo;Kim, Poong-Zag
    • Bulletin of the Korean Chemical Society
    • /
    • v.7 no.6
    • /
    • pp.421-425
    • /
    • 1986
  • New di- and triorganotin(IV) complexes of meta- and para-phenylenebisdithiocarbamate(m- and p-pbdtc) have been synthesized and characterized by means of chemical analysis, mass spectrometry, and IR spectroscopy. The reaction of the m-pbdtc ligand with diorganotin(IV) halides resulted in 1:1 products, $R_2Sn{\cdot}m$-pbdtc (R = Me, Cy, n-Bu) of dimeric nature whereas the p-pbdtc ligand led to an oligomeric or polymeric structure. The pbdtc ligands were also reacted with triorganotin(IV) halides to form monomeric complexes, $(R_3Sn)_2{\cdot}pbdtc.$ The tin coordination chemistry of these complexes were also discussed in terms of Sn-C and Sn-S bonding modes.

Structural Characterization for N-Terminal Domain of Caveolin-l

  • Kim, Jongmin;Shin, Jaeyoung;Park, Heonyong
    • Animal cells and systems
    • /
    • v.7 no.3
    • /
    • pp.207-211
    • /
    • 2003
  • Caveolin-1 is a principal protein in the plasma membrane microdomains called caveolae. Caveolae play an important role in the transcytosis and pinocytosis. Therefore, caveolin-1 is most likely to work for the membrane dynamic events. In addition, caveolin-1 interacts with various signaling molecules. Although caveolin-1 possesses a variety of physiological functions, its structural properties were little construed. Here we analyzed the structural dynamics of the N-terminal caveolin-1 (residues 1-101), in order to better understand the structural properties in terms of its versatile functionality. We first analyzed its oligomeric form using GST-fused N-terminal domain, revealing that it equilibrates between a dimer and monomers in av concentration-dependent manner. The N-terminal domain of caveolin-1 was previously found to form a heptamer, so that our data suggest the dimeric form as an intermediate structure for the heptamer formation. Then, we obtained the folding profile, which indicated that $\DeltaG_{H2O}\;is\;about\;0.5\;\pm0.03$ kcal/mol. The stability of N-terminal domain is relatively low, indicating that N-terminal domain may not be crystalline. Conclusively, the dynamic and flexible structure of N-terminal domain appears more favorable to maintain the versatile functions of caveolin-1.

Di- and Triorganotin(IV) Complexes of Sulfur-containing Ylidenemalonates

  • Jung, Ok-Sang;Lee, Young-A;Hong, Jong-Ki;Jeong, Jong-Hwa;Sohn, Youn-Soo
    • Bulletin of the Korean Chemical Society
    • /
    • v.14 no.6
    • /
    • pp.722-726
    • /
    • 1993
  • Organotin(IV) complexes of ylidenemalonates $(R_xSn)_{x-1}(O_2C)_2C=C(SR')_2\;(R=n-C_4H_9,\;C_6H_5,\;cyclo-C_6H_{11},\;CH_3OOCCH_2CH_2;\;x=2,3;\;R'=CH_3,\;R_2'=-CHCH-,\;-CH_2CH_{2^-})$ have been synthesized and characterized by means of various spectroscopic methods. The X-ray crystal structure of $(Ph_3Sn)_2(O_2C)_2C=C(SCH_3)_2$ has been determined (Pi; a= 9.704(2) ${\AA}$, b= 14.412(1) ${\AA}$, c= 14.760(3) ${\AA}$, ${alpha}$=74.26(1)$^{\circ}$, ${beta}$=99.38(l)$^{\circ}$, ${\gamma}$=79.09(1)$^{\circ}$, $V= 1950.7(7){\AA}^3$) and refined to R= 0.045. The crystal structure discloses a discrete molecule with bidentate-like carboxylate ligand. For diorganotin analogues, the structures are discussed in terms of IR, $^1H-NMR,\;^{13}C-NMR$, and FAB mass spectrometry. The mass spectrum indicates that the diorganotin complexes of ylidenemalonates are dimeric.

Crystal Structure of the Regulatory Domain of MexT, a Transcriptional Activator of the MexEF-OprN Efflux Pump in Pseudomonas aeruginosa

  • Kim, Suhyeon;Kim, Songhee H.;Ahn, Jinsook;Jo, Inseong;Lee, Zee-Won;Choi, Sang Ho;Ha, Nam-Chul
    • Molecules and Cells
    • /
    • v.42 no.12
    • /
    • pp.850-857
    • /
    • 2019
  • The Gram-negative opportunistic pathogen, Pseudomonas aeruginosa, has multiple multidrug efflux pumps. MexT, a LysR-type transcriptional regulator, functions as a transcriptional activator of the MexEF-OprN efflux system. MexT consists of an N-terminal DNA-binding domain and a C-terminal regulatory domain (RD). Little is known regarding MexT ligands and its mechanism of activation. We elucidated the crystal structure of the MexT RD at 2.0 Å resolution. The structure comprised two protomer chains in a dimeric arrangement. MexT possessed an arginine-rich region and a hydrophobic patch lined by a variable loop, both of which are putative ligand-binding sites. The three-dimensional structure of MexT provided clues to the interacting ligand structure. A DNase I footprinting assay of full-length MexT identified two MexT-binding sequence in the mexEF-oprN promoter. Our findings enhance the understanding of the regulation of MexT-dependent activation of efflux pumps.

Alteration of The Quaternary Structure of Human UDP-Glucose Dehydrogenase by a Double Mutation

  • Huh, Jae-Wan;Yang, Seung-Ju;Hwang, Eun-Young;Choi, Myung-Min;Lee, Hyun-Ju;Kim, Eun-A;Choi, Soo-Young;Choi, Jene;Hong, Hea-Nam;Cho, Sung-Woo
    • BMB Reports
    • /
    • v.40 no.5
    • /
    • pp.690-696
    • /
    • 2007
  • There are conflicting views for the polymerization process of human UDP-glucose dehydrogenase (UGDH) and no clear evidence has been reported yet. Based on crystal coordinates for Streptococcus pyogenes UGDH, we made double mutant A222Q/S233G. The double mutagenesis had no effects on expression, stability, and secondary structure. Interestingly, A222Q/S233G was a dimeric form and showed an UGDH activity, although it showed increased $K_m$ values for substrates. These results suggest that Ala222 and Ser233 play an important role in maintaining the hexameric structure and the reduced binding affinities for substrates are attributable to its altered subunit communication although quaternary structure may not be critical for catalysis.

Regulation of Gene Expression and 3-Dimensional Structure of DNA (유전자 발현 조절과 DNA 3차원적 구조와의 관계)

  • 김병동
    • Proceedings of the Botanical Society of Korea Conference
    • /
    • 1987.07a
    • /
    • pp.149-155
    • /
    • 1987
  • Growth and development of a higher plant, or any living organism for that matter, could be defined as an orderly expression of the genome in time and space in close interaction with the environment. During differentiation and development of a tissue or organ a group of genes must be selectively turned on or turned off mainly by trans-acting regulators. In this general concept of regulation of regulation of gene expression, a DNA molecule is recognized at a specific nucleotide sequence by DNA-binding factors. Molecular biology of the regulatory factors such as hormones, and their receptors, target DNA sequences and DNA-binding proteins are well advanced. What is not clearly understood is the molecular basis of the interactions between DNA and binding factors, expecially of the usages of the dyad symmetry of the target DNA sequences and the dimeric nature of the DNA-binding proteins. A unique 3-dimensional structure of DNA has been proposed that may play an important role in the orderly expression of the gene. A foldback intercoil (FBI) DNA configuration which was originally found by electron microscopy among mtDNA molecules from pearl millet has some unique features. The FBI configuration of DNA is believed to be formed when a flexible double helix folds back and interwines in the widened major grooves resulting in a four stranded, intercoil DNA whose thickness is the same as that of double stranded DNA. More recently, the FBI structure of DNA has been also induced in vitro by a novel enzyme which was purified from pearl millet mitochondria. It has been proposed that the FBI DNA could be utillized in intramolecular recombination which leads to inversion or deletion, and in intermolecular recombination which can lead to either site-specific recombination, genetic recombination via single strand invasion, or cross strand recombination. The structure and function of DNA in 3-dimensional aspect is emphasized for better understanding orderly expression of genes during growth and development.

  • PDF

Crystal Structure of a Highly Thermostable α-Carbonic Anhydrase from Persephonella marina EX-H1

  • Kim, Subin;Sung, Jongmin;Yeon, Jungyoon;Choi, Seung Hun;Jin, Mi Sun
    • Molecules and Cells
    • /
    • v.42 no.6
    • /
    • pp.460-469
    • /
    • 2019
  • Bacterial ${\alpha}-type$ carbonic anhydrase (${\alpha}-CA$) is a zinc metalloenzyme that catalyzes the reversible and extremely rapid interconversion of carbon dioxide to bicarbonate. In this study, we report the first crystal structure of a hyperthermostable ${\alpha}-CA$ from Persephonella marina EX-H1 (pmCA) in the absence and presence of competitive inhibitor, acetazolamide. The structure reveals a compactly folded pmCA homodimer in which each monomer consists of a 10-stranded ${\beta}-sheet$ in the center. The catalytic zinc ion is coordinated by three highly conserved histidine residues with an exchangeable fourth ligand (a water molecule, a bicarbonate anion, or the sulfonamide group of acetazolamide). Together with an intramolecular disulfide bond, extensive interfacial networks of hydrogen bonds, ionic and hydrophobic interactions stabilize the dimeric structure and are likely responsible for the high thermal stability. We also identified novel binding sites for calcium ions at the crystallographic interface, which serve as molecular glue linking negatively charged and otherwise repulsive surfaces. Furthermore, this large negatively charged patch appears to further increase the thermostability at alkaline pH range via favorable charge-charge interactions between pmCA and solvent molecules. These findings may assist development of novel ${\alpha}-CAs$ with improved thermal and/or alkaline stability for applications such as $CO_2$ capture and sequestration.

Purification and Characterization of Repressor of Temperate S. aureus Phage Φ11

  • Das, Malabika;Ganguly, Tridib;Chattoraj, Partho;Chanda, Palas Kumar;Bandhu, Amitava;Lee, Chia Yen;Sau, Subrata
    • BMB Reports
    • /
    • v.40 no.5
    • /
    • pp.740-748
    • /
    • 2007
  • To gain insight into the structure and function of repressor proteins of bacteriophages of gram-positive bacteria, repressor of temperate Staphylococcus aureus phage ${\phi}11$ was undertaken as a model system here and purified as an N-terminal histidine-tagged variant (His-CI) by affinity chromatography. A ~19 kDa protein copurified with intact His-CI (~ 30 kDa) at low level was resulted most possibly due to partial cleavage at its Ala-Gly site. At ~10 nM and higher concentrations, His-CI forms significant amount of dimers in solution. There are two repressor binding sites in ${\phi}11$ cI-cro intergenic region and binding to two sites occurs possibly by a cooperative manner. Two sites dissected by HincII digestion were designated operators $O_L$ and $O_R$, respectively. Equilibrium binding studies indicate that His-CI binds to $O_R$ with a little more strongly than $O_L$ and binding species is probably dimeric in nature. Interestingly His-CI binding affinity reduces drastically at elevated temperatures ($32-42^{\circ}C$). Both $O_L$ and $O_R$ harbor a nearly identical inverted repeat and studies show that ${\phi}11$ repressor binds to each repeat efficiently. Additional analyses indicate that ${\phi}11$ repressor, like $\lambda$ repressor, harbors an N-terminal domain and a C-terminal domain which are separated by a hinge region. Secondary structure of ${\phi}11$ CI even nearly resembles to that of $\lambda$ phage repressor though they differ at sequence level. The putative N-terminal HTH (helix-turn-helix) motif of ${\phi}11$ repressor belongs to the HTH -XRE-family of proteins and shows significant identity to the HTH motifs of some proteins of evolutionary distant organisms but not to HTH motifs of most S. aureus phage repressors.

Thermal Stability of Phaseolus vulgaris Leucoagglutinin: a Differential Scanning Calorimetry Study

  • Biswas, Shyamasri;Kayastha, Arvind M.
    • BMB Reports
    • /
    • v.35 no.5
    • /
    • pp.472-475
    • /
    • 2002
  • Phaseolus vulgaris phytohemagglutinin L is a homotetrameric-leucoagglutinating seed lectin. Its three-dimensional structure shows similarity with other members of the legume lectin family. The tetrameric form of this lectin is pH dependent. Gel filtration results showed that the protein exists in its dimeric state at pH 2.5 and as a tetramer at pH 7.2. Contrary to earlier reports on legume lectins that possess canonical dimers, thermal denaturation studies show that the refolding of phytohemagglutinin L at neutral pH is irreversible. Differential scanning calorimetry (DSC) was used to study the denaturation of this lectin as a function of pH that ranged from 2.0 to 3.0. The lectin was found to be extremely thermostable with a transition temperature around $82^{\circ}C$ and above $100^{\circ}C$ at pH 2.5 and 7.2, respectively. The ratio of calorimetric to vant Hoff enthalpy could not be calculated because of its irreversible-folding behavior. However, from the DSC data, it was discovered that the protein remains in its compact-folded state, even at pH 2.3, with the onset of denaturation occurring at $60^{\circ}C$.