• Title/Summary/Keyword: Dimensionality reduction model

Search Result 71, Processing Time 0.025 seconds

Machine Learning-based Classification of Hyperspectral Imagery

  • Haq, Mohd Anul;Rehman, Ziaur;Ahmed, Ahsan;Khan, Mohd Abdul Rahim
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.4
    • /
    • pp.193-202
    • /
    • 2022
  • The classification of hyperspectral imagery (HSI) is essential in the surface of earth observation. Due to the continuous large number of bands, HSI data provide rich information about the object of study; however, it suffers from the curse of dimensionality. Dimensionality reduction is an essential aspect of Machine learning classification. The algorithms based on feature extraction can overcome the data dimensionality issue, thereby allowing the classifiers to utilize comprehensive models to reduce computational costs. This paper assesses and compares two HSI classification techniques. The first is based on the Joint Spatial-Spectral Stacked Autoencoder (JSSSA) method, the second is based on a shallow Artificial Neural Network (SNN), and the third is used the SVM model. The performance of the JSSSA technique is better than the SNN classification technique based on the overall accuracy and Kappa coefficient values. We observed that the JSSSA based method surpasses the SNN technique with an overall accuracy of 96.13% and Kappa coefficient value of 0.95. SNN also achieved a good accuracy of 92.40% and a Kappa coefficient value of 0.90, and SVM achieved an accuracy of 82.87%. The current study suggests that both JSSSA and SNN based techniques prove to be efficient methods for hyperspectral classification of snow features. This work classified the labeled/ground-truth datasets of snow in multiple classes. The labeled/ground-truth data can be valuable for applying deep neural networks such as CNN, hybrid CNN, RNN for glaciology, and snow-related hazard applications.

Machine Learning Based Structural Health Monitoring System using Classification and NCA (분류 알고리즘과 NCA를 활용한 기계학습 기반 구조건전성 모니터링 시스템)

  • Shin, Changkyo;Kwon, Hyunseok;Park, Yurim;Kim, Chun-Gon
    • Journal of Advanced Navigation Technology
    • /
    • v.23 no.1
    • /
    • pp.84-89
    • /
    • 2019
  • This is a pilot study of machine learning based structural health monitoring system using flight data of composite aircraft. In this study, the most suitable machine learning algorithm for structural health monitoring was selected and dimensionality reduction method for application on the actual flight data was conducted. For these tasks, impact test on the cantilever beam with added mass, which is the simulation of damage in the aircraft wing structure was conducted and classification model for damage states (damage location and level) was trained. Through vibration test of cantilever beam with fiber bragg grating (FBG) sensor, data of normal and 12 damaged states were acquired, and the most suitable algorithm was selected through comparison between algorithms like tree, discriminant, support vector machine (SVM), kNN, ensemble. Besides, through neighborhood component analysis (NCA) feature selection, dimensionality reduction which is necessary to deal with high dimensional flight data was conducted. As a result, quadratic SVMs performed best with 98.7% for without NCA and 95.9% for with NCA. It is also shown that the application of NCA improved prediction speed, training time, and model memory.

Major gene identification for LPL gene in Korean cattles (엘피엘 유전자에 대한 한우의 우수 유전자 조합 선별)

  • Jin, Mi-Hyun;Oh, Dong-Yep;Lee, Jea-Young
    • Journal of the Korean Data and Information Science Society
    • /
    • v.24 no.6
    • /
    • pp.1331-1339
    • /
    • 2013
  • The lipoprotein lipase (LPL) gene can be considered a functional candidate gene that regulates fatty acid composition. Oh etc (2013) investigated the relationship between unsaturated fatty acids and five novel SNPs, and had confirmed that three polymorphic SNPs (c.322G>A, c.329A>T and c.1591G>A) were associated with fatty acid composition. We have used generalized linear model for adjusted environmental effects and multifactor dimensionality reduction (MDR) method to identify gene-gene interaction effect of statistical model in general. We applied the MDR method on the identify major interaction effects of exonic single nucleotide polymorphisms (SNPs) in the LPL gene for economic traits in Korean cattles population.

IoT botnet attack detection using deep autoencoder and artificial neural networks

  • Deris Stiawan;Susanto ;Abdi Bimantara;Mohd Yazid Idris;Rahmat Budiarto
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.17 no.5
    • /
    • pp.1310-1338
    • /
    • 2023
  • As Internet of Things (IoT) applications and devices rapidly grow, cyber-attacks on IoT networks/systems also have an increasing trend, thus increasing the threat to security and privacy. Botnet is one of the threats that dominate the attacks as it can easily compromise devices attached to an IoT networks/systems. The compromised devices will behave like the normal ones, thus it is difficult to recognize them. Several intelligent approaches have been introduced to improve the detection accuracy of this type of cyber-attack, including deep learning and machine learning techniques. Moreover, dimensionality reduction methods are implemented during the preprocessing stage. This research work proposes deep Autoencoder dimensionality reduction method combined with Artificial Neural Network (ANN) classifier as botnet detection system for IoT networks/systems. Experiments were carried out using 3- layer, 4-layer and 5-layer pre-processing data from the MedBIoT dataset. Experimental results show that using a 5-layer Autoencoder has better results, with details of accuracy value of 99.72%, Precision of 99.82%, Sensitivity of 99.82%, Specificity of 99.31%, and F1-score value of 99.82%. On the other hand, the 5-layer Autoencoder model succeeded in reducing the dataset size from 152 MB to 12.6 MB (equivalent to a reduction of 91.2%). Besides that, experiments on the N_BaIoT dataset also have a very high level of accuracy, up to 99.99%.

Early Software Quality Prediction Using Support Vector Machine (Support Vector Machine을 이용한 초기 소프트웨어 품질 예측)

  • Hong, Euy-Seok
    • Journal of Information Technology Services
    • /
    • v.10 no.2
    • /
    • pp.235-245
    • /
    • 2011
  • Early criticality prediction models that determine whether a design entity is fault-prone or not are becoming more and more important as software development projects are getting larger. Effective predictions can reduce the system development cost and improve software quality by identifying trouble-spots at early phases and proper allocation of effort and resources. Many prediction models have been proposed using statistical and machine learning methods. This paper builds a prediction model using Support Vector Machine(SVM) which is one of the most popular modern classification methods and compares its prediction performance with a well-known prediction model, BackPropagation neural network Model(BPM). SVM is known to generalize well even in high dimensional spaces under small training data conditions. In prediction performance evaluation experiments, dimensionality reduction techniques for data set are not used because the dimension of input data is too small. Experimental results show that the prediction performance of SVM model is slightly better than that of BPM and polynomial kernel function achieves better performance than other SVM kernel functions.

Gene Expression Pattern Analysis Using Aspect Model-based Dimensionality Reduction (Aspect model 기반의 차원 축소를 이용한 유전자 발현데이터 분석)

  • 장정호;엄재홍;김유섭;장병탁
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2004.10a
    • /
    • pp.247-249
    • /
    • 2004
  • 본 논문에서는 aspect model을 이용한 차원 축소 기반의 유전자 발현 데이터 분석을 제시한다. Aspect model은 은닉변수모델의 하나로서, 이를 이용하여 유전자 발현 데이터에 대한 확률적 학습 과정을 통해 특징적 발현 패턴을 추출할 수 있다. 또한 모델로부터 커널함수를 유도함으로써 발현패턴에 기반한 유전자간의 유사도를 자연스럽게 측정할 수 있다. 모델에 의해 정의되는 은닉공간 차원 수는 데이터 permutation 기반의 검증을 통해 결정한다. 효모 (yeast)의 세포 주기(cell cycle) 관련 발현데이터네 대한 실험에서, 주기별 특징 발현 패턴을 추출할 수 있었다. 또한 aspect model로부터 유도된 커널 기반의 유사도 척도를 이용함으로써, 동일 기능 또는 동일 complex 범주에 속하는 유전자 쌍 예측에서 기본적인 상관계수에 의한 방법에 비해 보다 향상된 성능을 얻을 수 있었다.

  • PDF

Comparative Study of Dimension Reduction Methods for Highly Imbalanced Overlapping Churn Data

  • Lee, Sujee;Koo, Bonhyo;Jung, Kyu-Hwan
    • Industrial Engineering and Management Systems
    • /
    • v.13 no.4
    • /
    • pp.454-462
    • /
    • 2014
  • Retention of possible churning customer is one of the most important issues in customer relationship management, so companies try to predict churn customers using their large-scale high-dimensional data. This study focuses on dealing with large data sets by reducing the dimensionality. By using six different dimension reduction methods-Principal Component Analysis (PCA), factor analysis (FA), locally linear embedding (LLE), local tangent space alignment (LTSA), locally preserving projections (LPP), and deep auto-encoder-our experiments apply each dimension reduction method to the training data, build a classification model using the mapped data and then measure the performance using hit rate to compare the dimension reduction methods. In the result, PCA shows good performance despite its simplicity, and the deep auto-encoder gives the best overall performance. These results can be explained by the characteristics of the churn prediction data that is highly correlated and overlapped over the classes. We also proposed a simple out-of-sample extension method for the nonlinear dimension reduction methods, LLE and LTSA, utilizing the characteristic of the data.

A Study on the Application of Natural Language Processing in Health Care Big Data: Focusing on Word Embedding Methods (보건의료 빅데이터에서의 자연어처리기법 적용방안 연구: 단어임베딩 방법을 중심으로)

  • Kim, Hansang;Chung, Yeojin
    • Health Policy and Management
    • /
    • v.30 no.1
    • /
    • pp.15-25
    • /
    • 2020
  • While healthcare data sets include extensive information about patients, many researchers have limitations in analyzing them due to their intrinsic characteristics such as heterogeneity, longitudinal irregularity, and noise. In particular, since the majority of medical history information is recorded in text codes, the use of such information has been limited due to the high dimensionality of explanatory variables. To address this problem, recent studies applied word embedding techniques, originally developed for natural language processing, and derived positive results in terms of dimensional reduction and accuracy of the prediction model. This paper reviews the deep learning-based natural language processing techniques (word embedding) and summarizes research cases that have used those techniques in the health care field. Then we finally propose a research framework for applying deep learning-based natural language process in the analysis of domestic health insurance data.

Overview of estimating the average treatment effect using dimension reduction methods (차원축소 방법을 이용한 평균처리효과 추정에 대한 개요)

  • Mijeong Kim
    • The Korean Journal of Applied Statistics
    • /
    • v.36 no.4
    • /
    • pp.323-335
    • /
    • 2023
  • In causal analysis of high dimensional data, it is important to reduce the dimension of covariates and transform them appropriately to control confounders that affect treatment and potential outcomes. The augmented inverse probability weighting (AIPW) method is mainly used for estimation of average treatment effect (ATE). AIPW estimator can be obtained by using estimated propensity score and outcome model. ATE estimator can be inconsistent or have large asymptotic variance when using estimated propensity score and outcome model obtained by parametric methods that includes all covariates, especially for high dimensional data. For this reason, an ATE estimation using an appropriate dimension reduction method and semiparametric model for high dimensional data is attracting attention. Semiparametric method or sparse sufficient dimensionality reduction method can be uesd for dimension reduction for the estimation of propensity score and outcome model. Recently, another method has been proposed that does not use propensity score and outcome regression. After reducing dimension of covariates, ATE estimation can be performed using matching. Among the studies on ATE estimation methods for high dimensional data, four recently proposed studies will be introduced, and how to interpret the estimated ATE will be discussed.

Exploration of the Gene-Gene Interactions Using the Relative Risks in Distinct Genotypes (유전자형별 상대 위험도를 이용한 유전자-유전자간 상호작용 탐색)

  • Jung, Ji-Won;Yee, Jae-Yong;Lee, Suk-Hoon;Pa, Mi-Ra
    • The Korean Journal of Applied Statistics
    • /
    • v.24 no.5
    • /
    • pp.861-869
    • /
    • 2011
  • One of the main objects of recent genetic studies is to understand genetic factors that induce complex diseases. If there are interactions between loci, it is difficult to find such associations through a single-locus analysis strategy. Thus we need to consider the gene-gene interactions and/or gene-environment interactions. The MDR(multifactor dimensionality reduction) method is being used frequently; however, it is not appropriate to detect interactions caused by a small fraction of the possible genotype pairs. In this study, we propose a relative risk interaction explorer that detects interactions through the calculation of the relative risks between the control and disease groups from each genetic combinations. For illustration, we apply this method to MDR open source data. We also compare the MDR and the proposed method using the simulated data eight genetic models.