• Title/Summary/Keyword: Dimensional model

Search Result 9,268, Processing Time 0.045 seconds

Discrete-Layer Model for Prediction of Free Edge Stresses in Laminated Composite Plates

  • Ahn, Jae-Seok;Woo, Kwang-Sung
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.23 no.6
    • /
    • pp.615-626
    • /
    • 2010
  • The discrete-layer model is proposed to analyze the edge-effect problem of laminates under extension and flexure. Based on three-dimensional elasticity theory, the displacement fields of each layer in a laminate have been treated discretely in terms of three displacement components across the thickness. The displacement fields at bottom and top surfaces within a layer are approximated by two-dimensional shape functions. Then two surfaces are connected by one-dimensional high order shape functions. Thus the p-convergent refinement on approximated one- and two-dimensional shape functions can be implemented independently of each other. The quality of present model is mostly determined by polynomial degrees of shape functions for given displacement fields. For nodal modes with physical meaning, the linear Lagrangian polynomials are considered. Additional modes without physical meaning, which are created by increasing nodeless degrees of shape functions, are derived from integrals of Legendre polynomials which have an orthogonality property. Also, it is assumed that mapping functions are linear in the light of shape of laminated plates. The results obtained by this proposed model are compared with those available in literatures. Especially, three-dimensional out-of-plane stresses in the interior and near the free edges are evaluated and convergence performance of the present model is established with the stress results.

A Study on the Quasi-3-Dimensional Compressible Flow Calculation by Introduction of Viscous Loss Model in Axial-Flow Compressor (점성 손실모델 도입에 의한 축류 압축기 준 3차원 압축성 유동해석)

  • 조강래;이진호;김주환
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.13 no.5
    • /
    • pp.1044-1051
    • /
    • 1989
  • A numerical calculation is carried out for the analysis of 3-dimensional compressible flow field in axial-flow rotating blades by using finite element method. The calculation of flow in impellers plays a dominant role in the theoretical research and design of turbomachines. Three-dimensional flow fields can be obtained by the quasi-three-dimensional iterative calculation of the flows both on blade-to-blade stream surfaces and hub-to-shroud stream surfaces with the introduction of viscous loss model in order to consider a loss due to viscosity of fluid. In devising the loss model, four primary sources of losses were identified: (1) blade profile loss (2) end wall loss (3) secondary flow loss (4) tip-leakage loss. For the consideration of an axially parabolic distribution of loss, the results of present calcullation are well agreed with the results by experiment, thus the introduction of loss model is proved to be valid.

A TWO-DIMENSIONAL FINITE VOLUME MODEL IN NONORTHOGONAL COORDINATE SYSTEM

  • Kim, Chang-Wan;Lee, Bong-Hee;Cho, Yong-Sik;Yoon, Tae-Hoon
    • Water Engineering Research
    • /
    • v.2 no.3
    • /
    • pp.151-160
    • /
    • 2001
  • A two-dimensional flow model is newly developed. Two-dimensional shallow-water equations are discretized by the finite volume method. A nonorthogonal coordinate system is then employed. The developed model is applied to simulations of flows in a 180 degree curved bend flow. Numerical prediction are compared to available laboratory measurement. A good agreement is observed.

  • PDF

Characterization of IPS-LCD by Reduced One-dimensional Model

  • Park, Byung-Hee;Lee, Yeon-Ho
    • Journal of the Optical Society of Korea
    • /
    • v.15 no.2
    • /
    • pp.168-173
    • /
    • 2011
  • Based on the distinctive characteristics observed in the intensity transmittance of an IPS-LC panel, the previous one-dimensional model is greatly reduced such that only a few data points and their interpolations predict the intensity transmittance of an IPS-LCD with a small error for arbitrary gray levels. Experimental procedure and numerical methods are described in detail.

Field Optimization Using NURB Surface in 3-Dimensional Space (NURB 곡면을 이용한 일반 3차원 전계최적화)

  • Lee, Byeong-Yoon;Kim, Eung-Sik;Park, Jong-Keun
    • Proceedings of the KIEE Conference
    • /
    • 1991.11a
    • /
    • pp.67-70
    • /
    • 1991
  • When analyzing field or optimizing the shape of electrode in three dimensional space by using the surface charge method, we need to divide finely the surface of electrode into surface element like triangle or rectangle. In this case, there exist any variables in field analysis or field optimization. In particular, smoothness on the surface of optimized shape is not good. Recently, A paper is published where introducing NURB curve to field analysis and field optimization about two dimensional space model and axial symmetric three dimensional space model results in reduced variables, enhenced accuracy and improved smoothness. NURB curve has some useful properties like continuity, controllability and locality. Therefore in this paper, in order to improve the demerits of the established optimization method for three dimensional space models, the NURB surface that has same properties in common with NURB curve is used to analyze and optimize simple model.

  • PDF

[ $\Omega<1$ ] POLAR INFLATION DRIVEN BY NEGATIVE GRAVITY

  • LA DAILE;LEE HAE SHIM
    • Journal of The Korean Astronomical Society
    • /
    • v.28 no.1
    • /
    • pp.61-65
    • /
    • 1995
  • We discuss a model4-dimensional Friedmann cosmology which may have evolved from a model of 4+D dimensions which admits spontaneous compactification of D dimensions (or N-dimensional variants of the Brans-Dicke (BD) theory). The BD parameter appearing in dimensional reduction is negative $-1<\omega<0$ (for the N-dimensional variants of the BD theory, $-1.5{\leq}{\omega})$. We find that if there had been inflationary transtion to the standard big-bang model, the Universe can undergoe a polar-type expansion during when the gravitational coupling becomes negative. The unique feature is that for the negative w, the density parameter of the post-inflationary Universe falls in a range 0<0<1 even if the Universe is geometrically flat (k = 0).

  • PDF

Equi-Value Line Program Development for 3-Dimensional Finite Element Models using Personal Computer (개인용 컴퓨터를 이용한 3차원 유한요소 등가곡선 프로그램 개발)

  • Lee, Seok-Soon
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.9 no.1
    • /
    • pp.44-52
    • /
    • 1992
  • A post-processor is developed to be effectively usable in the personal computer. 3-dimensional controur lines are shown on the surface of the finite element model and also on the 3-dimensional cutting plane, using the function linearly interpolated onto the triangular elements which are constructed on the surface or sectional polygons. And these polygons are originated from the finite element model, 3-dimensional model is projected on the plane with hidden line removal by comparision technique[6]. The graphic data file is used to increase the protability of the program. It is easy to use in the other computer system if the graphic routine adopted that computer system is developed. The developed program has wide applications in 3-dimensional finite element analysis.

  • PDF

Three-dimensional Analysis for Solidification and Bulging of Continuously Cast (연속 주조의 응고와 벌징에 관한 3차원 해석)

  • Kim Y. D.;Cho J. R.;Lee B. Y.;Ha M. Y.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2000.10a
    • /
    • pp.174-177
    • /
    • 2000
  • In this paper, The bulging behavior of the solidified shell in continuously cast slabs have been numerically analyzed using three-dimensional elasto-plastic and creep finite element method Three-dimensional model has been applied in order to investigate the effect of the narrow face shell on restraining the bulging deflection. Solidification analysis are carried out by two-dimensional finite difference method. In this way, strains occurring at the solidification front near the narrow face of the slab, as well as those occurring in the board face have been computed. The adequacy of the model has been checked against the experimental results. In addition, the effect of the slab width and casting speed on the bulging are discussed.

  • PDF

HOMOGENEOUS SUBMERSIONS OF 3-DIMENSIONAL GEOMETRIES

  • Lee, Kyung-Bai;Park, Joon-Sang
    • Bulletin of the Korean Mathematical Society
    • /
    • v.49 no.5
    • /
    • pp.1101-1129
    • /
    • 2012
  • We study the geometry of the images of 1-dimensional homogeneous submersions for each of the model spaces X of the eight 3-dimensional geometries. In particular, We shall calculate the group of isometries and the curvatures of the base surfaces for each of the model spaces of 3-dimensional geometries, with respect to every closed subgroup of the isometries of X acting freely.

On reducing the computing time of EFDC hydrodynamic model (EFDC 해수유동모형의 계산시간 효율화)

  • Jung, Tae-Sung;Choi, Jong-Hwa
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.14 no.2
    • /
    • pp.121-129
    • /
    • 2011
  • The EFDC model has been simplified to enhance the computing performance in hydrodynamic modeling. Water quality module and unnecessary conditional statements were deleted in subroutine list and memory allocation. The performance of the enhanced model (EFDC-E) was checked by applying EFDC and EFDC-E models to simulating the tidal flow in Mokpo coastal zone. Both two-dimensional models and threedimensional models have been applied and compared. Three-dimensional models showed better simulation results agreeing with observed currents than two-dimensional models. The simulation results of EFDC-E model gave good results agreeing with the simulation results of EFDC model and the observed data. The computing speed of EFDC-E model is improved 3 times faster than that of EFDC model in modeling hydrodynamic flow for real time of 3 days in both 2-dimensional modeling and 3-dimensional modeling. The EFDC-E model can be used widely for hydrodynamic modeling because of improved simulation speed.