• Title/Summary/Keyword: Dimensional constants

Search Result 157, Processing Time 0.027 seconds

Mechanical response of rockfills in a simulated true triaxial test: A combined FDEM study

  • Ma, Gang;Chang, Xiao-Lin;Zhou, Wei;Ng, Tang-Tat
    • Geomechanics and Engineering
    • /
    • v.7 no.3
    • /
    • pp.317-333
    • /
    • 2014
  • The study of the mechanical behavior of rockfill materials under three-dimensional loading conditions is a current research focus area. This paper presents a microscale numerical study of rockfill deformation and strength characteristics using the Combined Finite-Discrete Element Method (FDEM). Two features unique to this study are the consideration of irregular particle shapes and particle crushability. A polydisperse assembly of irregular polyhedra was prepared to reproduce the mechanical behavior of rockfill materials subjected to axial compression at a constant mean stress for a range of intermediate principal stress ratios in the interval [0, 1]. The simulation results, including the stress-strain characteristics, relationship between principal strains, and principal deviator strains are discussed. The stress-dilatancy behavior is described using a linear dilatancy equation with its material constants varying with the intermediate principal stress ratio. The failure surface in the principal stress space and its traces in the deviatoric and meridian plane are also presented. The modified Lade-Duncan criterion most closely describes the stress points at failure.

Sequence to Structure Approach of Estrogen Receptor Alpha and Ligand Interactions

  • Chamkasem, Aekkapot;Toniti, Waraphan
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.6
    • /
    • pp.2161-2166
    • /
    • 2015
  • Estrogen receptors (ERs) are steroid receptors located in the cytoplasm and on the nuclear membrane. The sequence similarities of human $ER{\alpha}$, mouse $ER{\alpha}$, rat $ER{\alpha}$, dog $ER{\alpha}$, and cat $ER{\alpha}$ are above 90%, but structures of $ER{\alpha}$ may different among species. Estrogen can be agonist and antagonist depending on its target organs. This hormone play roles in several diseases including breast cancer. There are variety of the relative binding affinity (RBA) of ER and estrogen species in comparison to $17{\beta}-estradiol$ (E2), which is a natural ligand of both $ER{\alpha}$ and $ER{\beta}$. The RBA of the estrogen species are as following: diethyl stilbestrol (DES) > hexestrol > dienestrol > $17{\beta}-estradiol$ (E2) > 17- estradiol > moxestrol > estriol (E3) >4-OH estradiol > estrone-3-sulfate. Estrogen mimetic drugs, selective estrogen receptor modulators (SERMs), have been used as hormonal therapy for ER positive breast cancer and postmenopausal osteoporosis. In the postgenomic era, in silico models have become effective tools for modern drug discovery. These provide three dimensional structures of many transmembrane receptors and enzymes, which are important targets of de novo drug development. The estimated inhibition constants (Ki) from computational model have been used as a screening procedure before in vitro and in vivo studies.

General Purpose Cross-section Analysis Program for Composite Rotor Blades

  • Park, Il-Ju;Jung, Sung-Nam;Kim, Do-Hyung;Yun, Chul-Yong
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.10 no.2
    • /
    • pp.77-85
    • /
    • 2009
  • A two-dimensional cross-section analysis program based on the finite element method has been developed for composite blades with arbitrary cross-section profiles and material distributions. The modulus weighted approach is used to take into account the non-homogeneous material characteristics of advanced blades. The CLPT (Classical Lamination Plate Theory) is applied to obtain the effective moduli of the composite laminate. The location of shear center for any given cross-sections are determined according to the Trefftz' definition while the torsion constants are obtained using the St. Venant torsion theory. A series of benchmark examples for beams with various cross-sections are illustrated to show the accuracy of the developed cross-section analysis program. The cross section cases include thin-walled C-channel, I-beam, single-cell box, NACA0012 airfoil, and KARI small-scale blades. Overall, a reasonable correlation is obtained in comparison with experiments or finite element analysis results.

Multi-Termination Technique for the Measurement of Characteristic Impedance and Propagation Constant of Sound Absorbing Materials Using an Impedance Tube

  • Lee, Jong-Hwa;Ih, Jeong-Guon
    • The Journal of the Acoustical Society of Korea
    • /
    • v.25 no.2E
    • /
    • pp.79-84
    • /
    • 2006
  • Acoustic characteristics of a sound absorbing material can be identified, if the characteristic impedance and propagation constants are known, which have generally been determined experimentally. One easy method determining these two essential parameters is to measure the one dimensional wave characteristics in the impedance tube. In th udy, the effects of backing conditions on the impedance tube measurement have been examined using several pairs of generally used end conditions. The results showed that the measured values are similar for most pairs of end conditions: however, it was observed that the measured characteristic impedance for different thickness did not agree well for some pairs. In this work, the multi termination method, using three or more known backing con ns, was suggested to reduce such random errors, which are mostly caused by the test procedure. Employing three terminations as a set, comprised of a rigid end, an end with porous material, and an end with a backing cavity, it was demonstrated that improved measured results could be obtained for an open cell PU foam varying widely with three different thicknesses.

Prediction of Thermoelastic Constants of Unidirectional Porous Composites Using an Unmixing-Mixing Scheme (분리-혼합 기법을 이용한 일방향 다공성 복합재료의 열탄성 계수 예측)

  • Shin, Eui-Sup
    • Composites Research
    • /
    • v.25 no.2
    • /
    • pp.34-39
    • /
    • 2012
  • A thermo-poro-elastic constitutive model of unidirectionally fiber-reinforced composite materials is suggested by extending the unmixing-mixing scheme which is based upon composite micromechanics. The strain components of thermal expansion due to a temperature change, gas pressure in pores, and chemical shrinkage are included in the constitutive model. On purpose to verify the derived constitutive relations, the representative volume element of two-dimensional lamina subject to various loading conditions is analyzed by the finite element method. The overall stress and strain responses are obtained, and compared with the predicted values by the unmixing-mixing scheme. The numerical results show the usefulness of the proposed model to predict the thermoelastic behavior of porous composites.

An NMR Study on Complexation of Cesium Ion by p-tert-Butylcalix[6]arene Ethyl Ester

  • Chung, Kee-Choo;Namgoong, Hyun;Lee, Jo-Woong
    • Bulletin of the Korean Chemical Society
    • /
    • v.25 no.5
    • /
    • pp.609-616
    • /
    • 2004
  • Complexation of cesium ion by p-tert-butylcalix[6]arene ethyl ester was studied by NMR spectroscopy in nonpolar $CDCl_3$ and polar acetone-$d_6$ and the results were compared with each other. Analysis of temperature dependent $^1H$ spectra and titration curves reveals that both solvents result in a 1 : 1 cone-form complex with nonpolar $CDCl_3$yielding a more tightly bound one than acetone-$d_6$. Unexpectedly, at very low temperature, we have found that two phenyl ring proton peaks of equal intensity appear both in $CDCl_3$and in acetone-$d_6$ solution which gradually collapse and eventually coalesce into a single line as temperature is raised. This observation could be interpreted in terms of the chemical exchange through direct and/or indirect interconversion between two equivalent conformations possible the complex in both solvents over the temperature range observed. And broadening of $^{133}Cs$ (I = 7/2) nmr line with increasing temperature has also been observed, indicating the exchange of $^{133}Cs$ ion between the complex and the solvent. From numerical fitting of lineshape changes for one-dimensional $^1H$ and $^{133}Cs$ spectra, the exchange rate constants and other relevant parameters for this conformational interconversion and the complex-solvent exchange were deduced.

A Study on the Stiffness of Frustum-shaped Coil Spring (원추형 코일스프링의 강성에 대한 연구)

  • 김진훈;이수종;이경호
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2001.11a
    • /
    • pp.21-27
    • /
    • 2001
  • Springs are widely utilized in machine element. To find out stiffness of frustum-shaped coil spring, the space beam theory using the finite element method is adopted in this paper In three dimensional space, a space frame element is a straight bar of uniform cross section which is capable of resisting axial forces, bending moments about two principal axes in the plane of its cross section and twisting moment about its centroidal axis. The corresponding displacement degrees of freedom are twelve. To find out load vector of coil spring subjected to distributed compression, principle of virtual work is adapted The displacements of nodal points due to small increment of force are calculated by the finite element method and the calculated nodal displacements are added to coordinates of nodal points. The new stiffness matrix of the system using the new coordinates of nodal points is adopted to calculate the another increments of nodal displacements, that is, the step by step method is used in this paper. The results of the finite element method are fairly well agreed with those of various experiments. Using MATLAB program developed in this paper, spring constants and stresses can be predicted by input of few factors.

  • PDF

A Numerical Analysis of Thermal Discharge using $\kappa-\imath$ Turbulence Closure ($\kappa-\imath$ 난류모델을 이용한 온배수 수치해석)

  • 최흥식
    • Water for future
    • /
    • v.29 no.2
    • /
    • pp.199-207
    • /
    • 1996
  • To evaluate the usage of $\kappa-\imath$ turbulence closure for the analysis of thermal discharge behavior, a two-dimensional depth-integrated numerical model is developed. The developed model is applied to a steady flow in an open channel with simle geometry and the numerical results agree well with existing experimental data. The adequate simulation of recirculation, reattachment, and excess temperature rise at downstream of the outlet in the channel attributes to the correct calculation of turbulent eddy viscosity and diffusivity by $\kappa-\imath$ turbulence model. For an accurate prediction of thermal discharge behavior, the introduction of buoyancy production term, the modification of source/sink, and the correct input of turbulence constants of the $\kappa-\imath$ turbulence model are required.

  • PDF

Magnetism and Magnetocrystalline Anisotropy at fcc Fe (001) Surface

  • Yun, Won-Seok;Cha, Gi-Beom;Hong, Soon-Cheol
    • Journal of Magnetics
    • /
    • v.13 no.4
    • /
    • pp.144-148
    • /
    • 2008
  • The size and surface effects on the magnetism of a fcc Fe (001) surface was investigated by performing firstprinciples calculations on 3, 5, 7, and 9 monolayers fcc Fe (001) single slabs with two different two-dimensional lattice constants, ${\alpha}=3.44{\AA}$ (System I) and 3.65 ${\AA}$ (System II), using the all-electron full-potential linearized augmented plane wave method within a generalized gradient approximation. The surface layers were coupled ferromagnetically to the subsurface layer in both systems. However, the magnetism of the inner layers was quite different from each other. While all the inner layers of System II were ferromagnetically coupled in the same way as the surface layer, the inner layers of System I showed a peculiar magnetism, bilayer antiferromagnetism. The calculated spin magnetic moments per Fe atom were approximately 2.7 and 2.9 ${\mu}_B$ at the surface for Systems I and II, respectively, due to the almost occupied Fe d-state being in the majority spin state and band narrowing. The spin orientations of System I were out-of-plane regardless of its thickness, whereas the orientation of System II changed from out-of-plane to in-plane with increasing thickness.

The controllable fluid dash pot damper performance

  • Samali, Bijan;Widjaja, Joko;Reizes, John
    • Smart Structures and Systems
    • /
    • v.2 no.3
    • /
    • pp.209-224
    • /
    • 2006
  • The use of smart dampers to optimally control the response of structures is on the increase. To maximize the potential use of such damper systems, their accurate modeling and assessment of their performance is of vital interest. In this study, the performance of a controllable fluid dashpot damper, in terms of damper forces, damper dynamic range and damping force hysteretic loops, respectively, is studied mathematically. The study employs a damper Bingham-Maxwell (BingMax) model whose mathematical formulation is developed using a Fourier series technique. The technique treats this one-dimensional Navier-Stokes's momentum equation as a linear superposition of initial-boundary value problems (IBVPs): boundary conditions, viscous term, constant Direct Current (DC) induced fluid plug and fluid inertial term. To hold the formulation applicable, the DC current level to the damper is supplied as discrete constants. The formulation and subsequent simulation are validated with experimental results of a commercially available magneto rheological (MR) dashpot damper (Lord model No's RD-1005-3) subjected to a sinusoidal stroke motion using a 'SCHENK' material testing machine in the Materials Laboratory at the University of Technology, Sydney.