• Title/Summary/Keyword: Dimensional constants

Search Result 157, Processing Time 0.025 seconds

Theoretical analysis of the lightwave localization phenomenon on the random transmission line (part 1) : localization characteristics of the solution of propagation equation (랜덤 선로상의 광 국재현상에 관한 해석(1) : 해의 국재성에 대한 이론적 고찰)

  • 최영규
    • Korean Journal of Optics and Photonics
    • /
    • v.14 no.4
    • /
    • pp.429-433
    • /
    • 2003
  • We try to analyse the localization phenomenon of a lightwave in random media by means of considering the solution of the propagation equation on a transmission line in which the propagation constants are randomly distributed. Lightwave localization is generated at the turning point where the solution is changed suddenly from an increase to a decrease. First, in order to investigate the changing process of the solution, we have derived the approximated one-dimensional Schrodinger equation from the two-dimensional wave equation by using the Brags condition. Considering the many types of solutions of the wave equation, we have investigated the conditions that allow the solutions to exist. Also, we have investigated the relationships between the localization of the solution and the variation of the propagation constant. In case of the exponential solution, we know that the permittivity $\varepsilon$=(0,0$\varepsilon$$_{0}$) is a very important parameter to influence the phase of the lightwave and to generate the localization.

Temperature Distribution and It's Contribution to Self-equilibrium Thermal Stress in Bridge (교량 단면 내 온도분포에 따른 자체평형 열응력 해석)

  • Kwak, Hyo-Gyoung;Kwon, Se-Hyung;Ha, Sang-Hee
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.24 no.5
    • /
    • pp.531-542
    • /
    • 2011
  • The time-dependent temperature distribution across the section in bridges is determined on the basis of the three-dimensional finite element analyses and numerical time integration in this study. The material properties which change with time and thermal stress of concrete are taken into account to effectively trace the early-age structural responses. Since the temperature distribution is nonlinear and depends upon many material constants such as the thermal conductivity, specific heat, hydration heat of concrete, heat transfer coefficients and solar radiation, three representative influencing factors of the construction season, wind velocity and bridge pavement are considered at the parametric studies. The validity of the introduced numerical model is established by comparing the analytical predictions with results from previous analytical studies. On the basis of parametric studies for four different bridge sections, it is found that the creep deformation in concrete bridges must be considered to reach more reasonable design results and the temperature distribution proposed in the Korean bridge design specification need to be improved.

Adaptive Video Watermarking based on 3D-DCT Using Image Characteristics (영상 특성을 이용한 3D-DCT 기반의 적응적인 비디오 워터마킹)

  • Park Hyun;Lee Sung-Hyun;Moon Young-Shik
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.43 no.3 s.309
    • /
    • pp.68-75
    • /
    • 2006
  • In this paper, we propose an adaptive video watermarking method using human visual system(HVS) and characteristics of three-dimensional cosine transform (3D-DCT) cubes. We classify 3D-DCT cubes into three patterns according to the distribution of coefficients in the 3D-DCT cube: cube with motion and textures, cube with high textures and little motion, and cube with little textures and line motion. Images are also classified into three types according to the ratio of these patterns: images with motion and textures, images with high textures and little motion, and images with little textures and little motion. The proposed watermarking method adaptivelyinserts the watermark on the coefficients of the mid-range in the 3D-DCT cube using the appropriately learned sensitivity table and the proportional constants depending on the patterns of 3D-DCT cubes and types of images. Experimental results show that the proposed method achieves better performance in terms of invisibility and robustness than the previous method.

Basemat Uplifting Effects on Seismic Response of Soil-Structure Interaction System (기초의 부분적 들림이 지반-구조물상호작용 시스템의 지진응답에 미치는 영향)

  • Joe, Yang Hee;Chang, Sung Pil
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.10 no.1
    • /
    • pp.37-45
    • /
    • 1990
  • An analytical procedure is proposed for the seismic analysis of a soil-structure interaction system with besemat uplift, including the effects of concurrent vertical seismic ground motion, nonlinear distribution of bearing soil pressure under the basemat, and 3-dimensional behavior of the system. The soil-structure interaction system is assumed to have rectangular-shaped basemat on elastic half-space. Nonlinearity of soil spring constants and soil damping coefficients induced by the base mat uplift is modeled by considering not only the reduction of contact area between soil and structure but also the effects of rigid body rotational motion of the superstructure, and the shift in the point of action of the resultant reaction on the basemat. Throught various parametric studies. it has been confirmed that the seismic responses of the superstructure reduce notably while response at the basemat increases considerably. The results also show that the effects of concurrent vertical ground motion. nonlinear soil pressure distribution under basemat, and 3-dimensional behavior of the system shall be included in uplift analysis in order to obtain the correct structural responses.

  • PDF

NMR Studies on N-terminal Domain of DNA2

  • Jung, Young-Sang;Lee, Kyoung-Hwa;Jung, Jin-Won;Lee, Weontae
    • Journal of the Korean Magnetic Resonance Society
    • /
    • v.4 no.2
    • /
    • pp.74-81
    • /
    • 2000
  • Saccharomyces cerevisiae Dna2 protein has biochemical activities: DNA-dependent ATPase, DNA helicase and DNA nuclease and is essential for cell viability. Especially, Pro$\^$504/ is determined as an important residue in ATPase, helicase, and nuclease activity. We synthesized and determined the three-dimensional solution structure of N-terminal domain comprising residues of Val$\^$501/ -_Phe$\^$508/ (Dna2$\^$pep/) using two-dimensional $^1$H-NMR and dynamical simulated annealing calculations. On the basis of a total of 44 experimental restraints including NOEs, $^3$J$\_$$\alpha$$\beta$/ and $^3$J$\_$$\alpha$$\beta$/ coupling constants, the solution structures of Dna2$\^$epe/ were calculated with the program CNS. The 23 lowest energy structures were selected out of 50 final simulated-annealing structures. The atomic RMSDs of the final 23 structures fur the individual residues were calculated with respect to the average structure. The mean RMSDs for the 23 structures were 0.042 nm for backbone atoms and 0.316 nm for all heavy atoms, respectively. The Ramachandran plot indicates that the $\Phi$, Ψ angles of the 23 final structures are properly distributed in energetically acceptable regions. Solution structure of Dna2$\^$pep/ showed a single unique turn spanning residues of Asn$\^$503/ Val$\^$506/.

  • PDF

Photocurrent Characteristics of ZnO Nanoparticles (ZnO 나노입자의 광전류 특성)

  • Jun, Jin-Hyung;Seong, Ho-Jun;Cho, Kyoung-Ah;Kim, Sang-Sig
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.06a
    • /
    • pp.207-207
    • /
    • 2008
  • ZnO is one of the widely utilized n-type semiconducting oxide materials in the field of optoelectronic devices. For its application to the fabrication of promising ultraviolet (UV) photodetectors, ZnO with various structures has been extensively studied. However, study on the photodetectors using zero-dimensional (0-D) ZnO nanoparticle is scarce while the 0-D nanoparticle structure has many advantages compared to the other dimensional structures for absorption of light. In this study, the photocurrent characteristics of ZnO nanoparticles were investigated through a simply pasting of the nanoparticles across the pre-patterned electrodes. Then the photoluminescence (PL) characteristic, photocurrent response spectrum, photo- and dark-current and photoresponse spectrum were investigated with a He-Cd laser and an Xe lamp. An dominant PL peak of the ZnO nanoparticles was located at the wavelength of 380 nm under the illumination of 325-nm wavelength light. The ratio of photocurrent to dark current (on/off ratio) is as high as 106 which is considerable value for promising photodetectors. On the other hand, the time constants in photoresponse were relatively slow. The reasons of the high on/off ratio and relatively slow photoresponse characteristic will be discussed.

  • PDF

Vibrational characteristics of sandwich annular plates with damaged core and FG face sheets

  • Xi, Fei
    • Steel and Composite Structures
    • /
    • v.44 no.1
    • /
    • pp.65-79
    • /
    • 2022
  • The main goal of this paper is to study the vibration of damaged core laminated annular plates with FG face sheets based on a three-dimensional theory of elasticity. The structures are made of a damaged isotropic core and two external face sheets. These skins are strengthened at the nanoscale level by randomly oriented Carbon nanotubes (CNTs) and are reinforced at the microscale stage by oriented straight fibers. These reinforcing phases are included in a polymer matrix and a three-phase approach based on the Eshelby-Mori-Tanaka scheme and on the Halpin-Tsai approach, which is developed to compute the overall mechanical properties of the composite material. In this study the effect of microcracks on the vibrational characteristic of the sandwich plate is considered. In particular, the structures are made by an isotropic core that undergoes a progressive uniform damage, which is modeled as a decay of the mechanical properties expressed in terms of engineering constants. These defects are uniformly distributed and affect the central layer of the plates independently from the direction, this phenomenon is known as "isotropic damage" and it is fully described by a scalar parameter. Three complicated equations of motion for the sectorial plates under consideration are semi-analytically solved by using 2-D differential quadrature method. Using the 2-D differential quadrature method in the r- and z-directions, allows one to deal with sandwich annular plate with arbitrary thickness distribution of material properties and also to implement the effects of different boundary conditions of the structure efficiently and in an exact manner. The fast rate of convergence and accuracy of the method are investigated through the different solved examples. The sandwich annular plate is assumed to have any arbitrary boundary conditions at the circular edges including simply supported, clamped and, free. Several parametric analyses are carried out to investigate the mechanical behavior of these multi-layered structures depending on the damage features, through-the-thickness distribution, and boundary conditions.

PWR core calculation based on pin-cell homogenization in three-dimensional pin-by-pin geometry

  • Bin Zhang;Yunzhao Li;Hongchun Wu;Wenbo Zhao;Chao Fang;Zhaohu Gong;Qing Li;Xiaoming Chai;Junchong Yu
    • Nuclear Engineering and Technology
    • /
    • v.56 no.6
    • /
    • pp.1950-1958
    • /
    • 2024
  • For the pressurized water reactor two-step calculation, the traditional assembly homogenization and two-group neutron diffusion calculation have been widely used. When it comes to the core pin-by-pin simulation, many models and techniques are different and unsettled. In this paper, the homogenization methods based on the pin discontinuity factors and super homogenization factors are used to get the pin-cell homogenized parameters. The heterogeneous leakage model is applied to modify the infinite flux spectrum of the single assembly with reflective boundary condition and to determine the diffusion coefficients for the SP3 solver which is used in the core simulation. To reduce the environment effect of the single-assembly reflective boundary condition, the online method for the SPH factors updating is applied in this paper, and the functionalization of SPH factors based on the least-squares method will be pre-made alone with the table of the group constants. The fitting function will be used to update the thermal-group SPH factors with a whole-core pin-by-pin homogeneous solution online. The three-dimensional Watts Bar Nuclear Unit 1 (WBN1) problem was utilized to test the performance of pin-by-pin calculation. And numerical results have demonstrated that PWR pin-by-pin core calculation has more accurate results compared with the traditional assembly-homogenization scheme.

Three Cyanide-Bridged One-Dimensional Single Chain CoIII-MnII Complexes: Rational Design, Synthesis, Crystal Structures and Magnetic Properties

  • Zhang, Daopeng;Zhao, Zengdian;Wang, Ping;Chen, Xia
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.5
    • /
    • pp.1581-1585
    • /
    • 2012
  • Two pyridinecarboxamide dicyanidecobalt(III) building blocks and two mononuclear seven-coordinated macrocycle manganese(II) compounds have been rationally selected to assemble cyanide-bridged heterobimetallic complexes, resulting in three cyanide-bridged $Co^{III}-Mn^{II}$ complexes. Single X-ray diffraction analysis show that these complexes $\{[Mn(L^1)][Co(bpb)]\}ClO_4{\cdot}CH_3OH{\cdot}0.5H_2O$ ($\mathbf{1}$), $\{[Mn(L^2)][Co(bpb)]\}ClO_4{\cdot}0.5CH_3OH$ ($\mathbf{2}$) and ${[Mn(L^1)][Co(bpb)]\}ClO_4{\cdot}H_2O$ ($\mathbf{3}$) ($L^1$ = 3,6-diazaoctane-1,8-diamine, $L^2$ = 3,6-dioxaoctano-1,8-diamine; $bpb2^{2-}$ = 1,2-bis(pyridine-2-carboxamido)benzenate, $bpmb2^{2-}$ = 1,2-bis(pyridine-2-carboxamido)-4-methyl-benzenate) all present predictable one-dimensional single chain structures. The molecular structures of these one-dimensional complexes consists of alternating units of $[Mn(L)]^{2+}$ ($L=L^1$ or $L^2$) and $[Co(L^{\prime})(CN)2]^-$ ($L^{\prime}=bpb2^{2-}$, or $bpmb2^{2-}$), forming a cyanide-bridged cationic polymeric chain with free $ClO_4{^-}$ as the balance anion. The coordination geometry of manganese(II) ion in the three one-dimensional complexes is a slightly distorted pentagonal-bipyrimidal with two cyanide nitrogen atoms at the trans positions and $N_5$ or $N_3O_2$ coordinating mode at the equatorial plane from ligand $L^1$ or $L^2$. Investigation over magnetic properties of these complexes reveals that the very weak magnetic coupling between neighboring Mn(II) ions connected by the diamagnetic dicyanidecobalt(III) building block. A best-fit to the magnetic susceptibility of complex ${\mathbf}{1}$ leads to the magnetic coupling constants $J=-0.084(3)cm^{-1}$.

Impedance-Based Characterization of 2-Dimenisonal Conduction Transports in the LaAlO3/SrxCa1-xTiO3/SrTiO3 systems

  • Choi, Yoo-Jin;Park, Da-Hee;Kim, Eui-Hyun;Park, Chan-Rok;Kwon, Kyeong-Woo;Moon, Seon-Young;Baek, Seung-Hyub;Kim, Jin-Sang;Hwang, Jinha
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.171.2-171.2
    • /
    • 2016
  • The 2-dimensiona electron gas (2DEG) layers have opened tremendous interests in the heterooxide interfaces formed between two insulating materials, especially between LaAlO3 and $SrTiO_3$. The 2DEG layers exhibit extremely high mobility and carrier concentrations along with metallic transport phenomena unlike the constituent oxide materials, i.e., $LaAlO_3$ and $SrTiO_3$. The current work inserted artificially the interfacial layer, $Sr_xCa_{1-x}TiO_3$ between $LaAlO_3$ and $SrTiO_3$, with the aim to controlling the 2-dimensional transports. The insertion of the additional materials affect significantly their corresponding electrical transports. Such features have been probed using DC and AC-based characterizations. In particular, impedance spectroscopy was employed as an AC-based characterization tool. Frequency-dependent impedance spectroscopy have been widely applied to a number of electroceramic materials, such as varistors, MLCCs, solid electrolytes, etc. Impedance spectroscopy provides powerful information on the materials system: i) the simultaneous measurement of conductivity and dielectric constants, ii) systematic identification of electrical origins among bulk-, grain boundary-, and electrode-based responses, and iii) the numerical estimation on the uniformity of the electrical origins. Impedance spectroscopy was applied to the $LaAlO_3/Sr_xCa_{1-x}TiO_3/SrTiO_3$ system, in order to understand the 2-dimensional transports in terms of the interfacial design concepts. The 2-dimensional conduction behavior system is analyzed with special emphasis on the underlying mechanisms. Such approach is discussed towards rational optimization of the 2-dimensional nanoelectronic devices.

  • PDF