• Title/Summary/Keyword: Dimensional analysis

Search Result 12,681, Processing Time 0.037 seconds

A comparative study of impression methods using stock tray and intraoral scanner in a completely edentulous patient with an atypical arch shape: a case report (비정형적인 악궁을 가진 완전 무치악 환자에서 기성 트레이와 구강 스캐너를 이용한 인상 채득 방법의 비교 연구: 증례 보고)

  • Jae-Hoon Park;Ji-Hyun Kim;Jae-Min Seo;Jung-Jin Lee;Yeon-Hee Park
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.61 no.4
    • /
    • pp.344-355
    • /
    • 2023
  • In complete denture fabrication, accurate preliminary impressions are crucial for obtaining an accurate final impression. However, it can be challenging in cases of atypical arch shapes. This case report compares diagnostic casts made with a stock tray and an intraoral scanner (IOS) in a patient with an atypical arch shape. A 58-year-old edentulous male patient with long, narrow, atypical arches was referred to the Oral and Maxillofacial Surgery department for complete denture fabrication. Compared to the diagnostic cast obtained using IOS with adequately captured anatomical parameters, the primary model obtained using a stock tray showed prominent overextended flanges on the labial and buccal sides of the maxillary arch and less prominent overextended flanges in the mandibular arch with pressure spots in the posterior palatal seal area. The custom tray fabricated from such a model required additional adjustment resulting in increased chair time during the final impression procedure.

Phase Segmentation of PVA Fiber-Reinforced Cementitious Composites Using U-net Deep Learning Approach (U-net 딥러닝 기법을 활용한 PVA 섬유 보강 시멘트 복합체의 섬유 분리)

  • Jeewoo Suh;Tong-Seok Han
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.36 no.5
    • /
    • pp.323-330
    • /
    • 2023
  • The development of an analysis model that reflects the microstructure characteristics of polyvinyl alcohol (PVA) fiber-reinforced cementitious composites, which have a highly complex microstructure, enables synergy between efficient material design and real experiments. PVA fiber orientations are an important factor that influences the mechanical behavior of PVA fiber-reinforced cementitious composites. Owing to the difficulty in distinguishing the gray level value obtained from micro-CT images of PVA fibers from adjacent phases, fiber segmentation is time-consuming work. In this study, a micro-CT test with a voxel size of 0.65 ㎛3 was performed to investigate the three-dimensional distribution of fibers. To segment the fibers and generate training data, histogram, morphology, and gradient-based phase-segmentation methods were used. A U-net model was proposed to segment fibers from micro-CT images of PVA fiber-reinforced cementitious composites. Data augmentation was applied to increase the accuracy of the training, using a total of 1024 images as training data. The performance of the model was evaluated using accuracy, precision, recall, and F1 score. The trained model achieved a high fiber segmentation performance and efficiency, and the approach can be applied to other specimens as well.

Effects of Physical Therapy Combined with Virtual Reality Games on Pain, Function, Quality of Life, And Engagement in Post-Knee-Surgery Patients (가상현실 게임을 적용한 물리치료가 무릎 수술 후 환자의 통증, 기능 변화, 삶의 질, 동기부여에 미치는 영향)

  • Hong-Gil Kim;Ju-Hyeon Jung
    • PNF and Movement
    • /
    • v.21 no.3
    • /
    • pp.345-356
    • /
    • 2023
  • Purpose: The aim of this study was to investigate the effects of physical therapy combined with a virtual reality (VR) game on pain, quality of life (QOL), engagement, and knee function in post-knee-surgery patients. Methods: Twenty-four patients who had undergone knee surgery four weeks or more before the study were recruited. Two withdrew from the study during the four-week experimental period, and a total of 22 patients were included in the final analysis. Routine physical therapy consisting of electrostimulation (10 min.) and therapeutic massage (10 min.) was the base intervention for all groups. The experimental group (n = 10) was additionally exposed to a VR game intervention, while the control group (n = 12) underwent an intervention involving similar motions as the experimental intervention but with no VR. The intervention for the experimental group used the game Rig Fit Adventure on Nintendo switch. Both groups underwent their respective interventions 3 times a week (35 min. per session) for 4 weeks. Pain was assessed using the numeric rating scale (NRS), and QOL was assessed using the EuroQol five-dimensional five-level questionnaire (EQ-5D-5L). Engagement was assessed using the Korea flow state scale (K-FSS). Finally, knee movement and function were assessed based on knee flexion and extension, range of motion (ROM), and Western Ontario and McMaster Universities Arthritis Index (WOMAC). Results: After the four-week physical therapy, both groups showed significant reductions in pain (on the NRS), increased knee ROM (flexion), better WOMAC scores, and increased EQ-5D-5L scores (p < 0.05), with the experimental group showing significantly better improvements in EQ-5D-5L and K-FSS scores (p < 0.05). Conclusion: The results of this study confirm that a VR-game-integrated intervention is effective for improving pain, QOL, engagement, and knee function in post-knee surgery patients and that VR-game-integrated interventions could be therapeutic alternatives for patients bedridden for prolonged periods with little motivation for rehabilitation.

Numerical analysis of geomorphic changes in rivers due to dam pulse discharge of Yeongju Dam (댐 펄스방류로 인한 하천의 지형변화 수치모의 분석(영주댐 중심으로))

  • Baek, Tae Hyoa;Jang, Chang-Laeb;Lee, Kyung Su
    • Journal of Korea Water Resources Association
    • /
    • v.56 no.12
    • /
    • pp.871-881
    • /
    • 2023
  • This study investigates the geomorphic changes and Bed Relief Index of the river downstream of the Yeongju Dam by Nays2DH, a two-dimensional numerical model, in order to grasp the dynamics of the downstream river while applying various flow patterns such as pulse discharge. It shows that the geomorphic and the bed elevations changes are the largest under the condition of the normalized pulse discharge. The total change in the riverbed is 29.88 m for uniform flow, 27.46 m for normalized hydrograph, 29.63 m for pulse flow and 31.87 m for pulse flow with normalized hydrograph which result in the largest variation in scour and deposition. The Bed Relief Index (BRI) increases with time under conditions of uniform flow, pulse flow and pulse flow with normalized hydrograph. However, BRI increased rapidly until 30 hrs after the peak flow (14 hrs), but decreased from 56 hrs under the condition of normalized hydrograph. Therefore, the condition of normalized hydrograph gives greater dynamics than the condition of a single flood or constant flow, and the dynamics increase downstream than upstream, resulting in an effect on improving the environment of the river downstream of the dam.

Volume and Mass Doubling Time of Lung Adenocarcinoma according to WHO Histologic Classification

  • Jung Hee Hong;Samina Park;Hyungjin Kim;Jin Mo Goo;In Kyu Park;Chang Hyun Kang;Young Tae Kim;Soon Ho Yoon
    • Korean Journal of Radiology
    • /
    • v.22 no.3
    • /
    • pp.464-475
    • /
    • 2021
  • Objective: This study aimed to evaluate the tumor doubling time of invasive lung adenocarcinoma according to the International Association of the Study for Lung Cancer (IASLC)/American Thoracic Society (ATS)/European Respiratory Society (ERS) histologic classification. Materials and Methods: Among the 2905 patients with surgically resected lung adenocarcinoma, we retrospectively included 172 patients (mean age, 65.6 ± 9.0 years) who had paired thin-section non-contrast chest computed tomography (CT) scans at least 84 days apart with the same CT parameters, along with 10 patients with squamous cell carcinoma (mean age, 70.9 ± 7.4 years) for comparison. Three-dimensional semiautomatic segmentation of nodules was performed to calculate the volume doubling time (VDT), mass doubling time (MDT), and specific growth rate (SGR) of volume and mass. Multivariate linear regression, one-way analysis of variance, and receiver operating characteristic curve analyses were performed. Results: The median VDT and MDT of lung cancers were as follows: acinar, 603.2 and 639.5 days; lepidic, 1140.6 and 970.1 days; solid/micropapillary, 232.7 and 221.8 days; papillary, 599.0 and 624.3 days; invasive mucinous, 440.7 and 438.2 days; and squamous cell carcinoma, 149.1 and 146.1 days, respectively. The adjusted SGR of volume and mass of the solid-/micropapillary-predominant subtypes were significantly shorter than those of the acinar-, lepidic-, and papillary-predominant subtypes. The histologic subtype was independently associated with tumor doubling time. A VDT of 465.2 days and an MDT of 437.5 days yielded areas under the curve of 0.791 and 0.795, respectively, for distinguishing solid-/micropapillary-predominant subtypes from other subtypes of lung adenocarcinoma. Conclusion: The tumor doubling time of invasive lung adenocarcinoma differed according to the IASCL/ATS/ERS histologic classification.

Imaging Assessment of Visceral Pleural Surface Invasion by Lung Cancer: Comparison of CT and Contrast-Enhanced Radial T1-Weighted Gradient Echo 3-Tesla MRI

  • Yu Zhang;Woocheol Kwon;Ho Yun Lee;Sung Min Ko;Sang-Ha Kim;Won-Yeon Lee;Suk Joong Yong;Soon-Hee Jung;Chun Sung Byun;JunHyeok Lee;Honglei Yang;Junhee Han;Jeanne B. Ackman
    • Korean Journal of Radiology
    • /
    • v.22 no.5
    • /
    • pp.829-839
    • /
    • 2021
  • Objective: To compare the diagnostic performance of contrast-enhanced radial T1-weighted gradient-echo 3-tesla (3T) magnetic resonance imaging (MRI) and computed tomography (CT) for the detection of visceral pleural surface invasion (VPSI). Visceral pleural invasion by non-small-cell lung cancer (NSCLC) can be classified into two types: PL1 (without VPSI), invasion of the elastic layer of the visceral pleura without reaching the visceral pleural surface, and PL2 (with VPSI), full invasion of the visceral pleura. Materials and Methods: Thirty-three patients with pathologically confirmed VPSI by NSCLC were retrospectively reviewed. Multidetector CT and contrast-enhanced 3T MRI with a free-breathing radial three-dimensional fat-suppressed volumetric interpolated breath-hold examination (VIBE) pulse sequence were compared in terms of the length of contact, angle of mass margin, and arch distance-to-maximum tumor diameter ratio. Supplemental evaluation of the tumor-pleura interface (smooth versus irregular) could only be performed with MRI (not discernible on CT). Results: At the tumor-pleura interface, radial VIBE MRI revealed a smooth margin in 20 of 21 patients without VPSI and an irregular margin in 10 of 12 patients with VPSI, yielding an accuracy, sensitivity, specificity, positive predictive value, negative predictive value, and F-score for VPSI detection of 91%, 83%, 95%, 91%, 91%, and 87%, respectively. The McNemar test and receiver operating characteristics curve analysis revealed no significant differences between the diagnostic accuracies of CT and MRI for evaluating the contact length, angle of mass margin, or arch distance-to-maximum tumor diameter ratio as predictors of VPSI. Conclusion: The diagnostic performance of contrast-enhanced radial T1-weighted gradient-echo 3T MRI and CT were equal in terms of the contact length, angle of mass margin, and arch distance-to-maximum tumor diameter ratio. The advantage of MRI is its clear depiction of the tumor-pleura interface margin, facilitating VPSI detection.

Analysis of the Manners of Using Scientific Models in Secondary Earth Science Classrooms: With a Focus on Lessons in the Domains of Atmospheric and Oceanic Earth Sciences (중등학교 지구과학 수업에서 과학적 모델의 활용 양상 분석: 대기 및 해양 지구과학 관련 수업을 중심으로)

  • Oh, Phil-Seok
    • Journal of The Korean Association For Science Education
    • /
    • v.27 no.7
    • /
    • pp.645-662
    • /
    • 2007
  • The purpose of this study was to explore the manners in which models are used in secondary science classrooms. A total of thirteen video-recordings of science lessons dealing with the domains of atmospheric and oceanic earth sciences and their verbatim transcripts were analysed both quantitatively and qualitatively. Interviews with three inservice science teachers were also conducted. Six interrelated assertions were generated as the result of the study: 1) The most frequently used models in secondary earth science classrooms include two-dimensional pictorial, symbolic, iconic, and diagrammatic ones; 2) Science teachers employ models as a mode of representation to make the subject matter available to students; 3) In earth science classrooms, teachers use typical forms of models in intensive manners; 4) Students themselves deal with models on a few occasions, but they just follow similar procedures with the same models; 5) Teachers talk rarely about the nature of scientific models and provide few opportunities for students to think about it; and, 6) Teachers in practice think that the value of using models should be appraised in consideration of the pedagogical intentions of the teacher. Implications for science education and science education research were discussed.

Evaluation of the correlation between the muscle fat ratio of pork belly and pork shoulder butt using computed tomography scan

  • Sheena Kim;Jeongin Choi;Eun Sol Kim;Gi Beom Keum;Hyunok Doo;Jinok Kwak;Sumin Ryu;Yejin Choi;Sriniwas Pandey;Na Rae Lee;Juyoun Kang;Yujung Lee;Dongjun Kim;Kuk-Hwan Seol;Sun Moon Kang;In-Seon Bae;Soo-Hyun Cho;Hyo Jung Kwon;Samooel Jung;Youngwon Lee;Hyeun Bum Kim
    • Korean Journal of Agricultural Science
    • /
    • v.50 no.4
    • /
    • pp.809-815
    • /
    • 2023
  • This study was conducted to find out the correlation between meat quality and muscle fat ratio in pork part meat (pork belly and shoulder butt) using CT (computed tomography) imaging technique. After 24 hours from slaughter, pork loin and belly were individually prepared from the left semiconductors of 26 pigs for CT measurement. The image obtained from CT scans was checked through the picture archiving and communications system (PACS). The volume of muscle and fat in the pork belly and shoulder butt of cross-sectional images taken by CT was estimated using Vitrea workstation version 7. This assemblage was further processed through Vitrea post-processing software to automatically calculate the volumes (Fig. 1). The volumes were measured in milliliters (mL). In addition to volume calculation, a three-dimensional reconstruction of the organ under consideration was generated. Pearson's correlation coefficient was analyzed to evaluate the relationship by region (pork belly, pork shoulder butt), and statistical processing was performed using GraphPad Prism 8. The muscle-fat ratios of pork belly taken by CT was 1 : 0.86, while that of pork shoulder butt was 1 : 0.37. As a result of CT analysis of the correlation coefficient between pork belly and shoulder butt compared to the muscle-fat ratio, the correlation coefficient was 0.5679 (R2 = 0.3295, p < 0.01). CT imaging provided very good estimates of muscle contents in cuts and in the whole carcass.

Agreement and Reliability between Clinically Available Software Programs in Measuring Volumes and Normative Percentiles of Segmented Brain Regions

  • Huijin Song;Seun Ah Lee;Sang Won Jo;Suk-Ki Chang;Yunji Lim;Yeong Seo Yoo;Jae Ho Kim;Seung Hong Choi;Chul-Ho Sohn
    • Korean Journal of Radiology
    • /
    • v.23 no.10
    • /
    • pp.959-975
    • /
    • 2022
  • Objective: To investigate the agreement and reliability of estimating the volumes and normative percentiles (N%) of segmented brain regions among NeuroQuant (NQ), DeepBrain (DB), and FreeSurfer (FS) software programs, focusing on the comparison between NQ and DB. Materials and Methods: Three-dimensional T1-weighted images of 145 participants (48 healthy participants, 50 patients with mild cognitive impairment, and 47 patients with Alzheimer's disease) from a single medical center (SMC) dataset and 130 participants from the Alzheimer's Disease Neuroimaging Initiative (ADNI) dataset were included in this retrospective study. All images were analyzed with DB, NQ, and FS software to obtain volume estimates and N% of various segmented brain regions. We used Bland-Altman analysis, repeated measures ANOVA, reproducibility coefficient, effect size, and intraclass correlation coefficient (ICC) to evaluate inter-method agreement and reliability. Results: Among the three software programs, the Bland-Altman plot showed a substantial bias, the ICC showed a broad range of reliability (0.004-0.97), and repeated-measures ANOVA revealed significant mean volume differences in all brain regions. Similarly, the volume differences of the three software programs had large effect sizes in most regions (0.73-5.51). The effect size was largest in the pallidum in both datasets and smallest in the thalamus and cerebral white matter in the SMC and ADNI datasets, respectively. N% of NQ and DB showed an unacceptably broad Bland-Altman limit of agreement in all brain regions and a very wide range of ICC values (-0.142-0.844) in most brain regions. Conclusion: NQ and DB showed significant differences in the measured volume and N%, with limited agreement and reliability for most brain regions. Therefore, users should be aware of the lack of interchangeability between these software programs when they are applied in clinical practice.

Effect of modifying the thickness of the plate at the level of the overlap length in the presence of bonding defects on the strength of an adhesive joint

  • Attout Boualem;Sidi Mohamed Medjdoub;Madani Kouider;Kaddouri Nadia;Elajrami Mohamed;Belhouari Mohamed;Amin Houari;Salah Amroune;R.D.S.G. Campilho
    • Advances in aircraft and spacecraft science
    • /
    • v.11 no.1
    • /
    • pp.83-103
    • /
    • 2024
  • Adhesive bonding is currently widely used in many industrial fields, particularly in the aeronautics sector. Despite its advantages over mechanical joints such as riveting and welding, adhesive bonding is mostly used for secondary structures due to its low peel strength; especially if it is simultaneously exposed to temperature and humidity; and often presence of bonding defects. In fact, during joint preparation, several types of defects can be introduced into the adhesive layer such as air bubbles, cavities, or cracks, which induce stress concentrations potentially leading to premature failure. Indeed, the presence of defects in the adhesive joint has a significant effect on adhesive stresses, which emphasizes the need for a good surface treatment. The research in this field is aimed at minimizing the stresses in the adhesive joint at its free edges by geometric modifications of the ovelapping part and/or by changing the nature of the substrates. In this study, the finite element method is used to describe the mechanical behavior of bonded joints. Thus, a three-dimensional model is made to analyze the effect of defects in the adhesive joint at areas of high stress concentrations. The analysis consists of estimating the different stresses in an adhesive joint between two 2024-T3 aluminum plates. Two types of single lap joints(SLJ) were analyzed: a standard SLJ and another modified by removing 0.2 mm of material from the thickness of one plate along the overlap length, taking into account several factors such as the applied load, shape, size and position of the defect. The obtained results clearly show that the presence of a bonding defect significantly affects stresses in the adhesive joint, which become important if the joint is subjected to a higher applied load. On the other hand, the geometric modification made to the plate considerably reduces the various stresses in the adhesive joint even in the presence of a bonding defect.