중등학교 지구과학 수업에서 과학적 모델의 활용 양상 분석: 대기 및 해양 지구과학 관련 수업을 중심으로

Analysis of the Manners of Using Scientific Models in Secondary Earth Science Classrooms: With a Focus on Lessons in the Domains of Atmospheric and Oceanic Earth Sciences

  • 발행 : 2007.10.30

초록

본 연구의 목적은 우리나라 중등학교 과학 수업에서 모델이 활용되는 양상을 탐색하는 것이었다. 대기 및 해양 지구과학에 관련된 총 13개의 비디오 녹화 자료와 그것들의 전사본을 계량적인 방법과 질적인 방법으로 분석하고, 3명의 현장 교사들과 면담을 수행하였다. 연구의 결과는 서로 연관된 여섯 가지 주장들로 요약되었다. 즉, 1) 우리나라 중등학교의 대기 및 해양 지구과학 관련 수업에서는 평면적 그림 모델과 기호 모델, 모상 모델과 도해적 모델이 주로 활용된다. 2) 지구과학 수업에서 교사들은 모델을 교과 내용을 전달하기 위한 하나의 표상 형식으로서 활용한다. 3) 우리나라 중등학교 지구과학 수업에서 교사들은 이미 그 구조가 결정된 전형적인 모델을 집중적으로 활용한다. 4) 지구과학 수업에서 종종 학생들이 직접 모델을 다룰 때에는 모든 학생들이 동일한 모델을 가지고 유사한 절차에 따라 활동에 참여한다. 5) 지구과학 수업에서 교사가 과학적 모델의 본성에 대해 설명하는 경우는 거의 없으며, 학생들이 과학적 모델의 본성에 대해 생각해 볼 수 있는 기회 또한 거의 제공하지 않는다. 6) 교사들은 지구과학 수업에서 과학적 모델을 활용하는 일의 가치가 교사의 교수법적인 의도에 비추어 판단되어야 한다고 생각한다. 이러한 연구 결과를 바탕으로 모델을 활용한 과학 수업과 과학 교육 연구에서 고려해야 할 점들을 논의하였다.

The purpose of this study was to explore the manners in which models are used in secondary science classrooms. A total of thirteen video-recordings of science lessons dealing with the domains of atmospheric and oceanic earth sciences and their verbatim transcripts were analysed both quantitatively and qualitatively. Interviews with three inservice science teachers were also conducted. Six interrelated assertions were generated as the result of the study: 1) The most frequently used models in secondary earth science classrooms include two-dimensional pictorial, symbolic, iconic, and diagrammatic ones; 2) Science teachers employ models as a mode of representation to make the subject matter available to students; 3) In earth science classrooms, teachers use typical forms of models in intensive manners; 4) Students themselves deal with models on a few occasions, but they just follow similar procedures with the same models; 5) Teachers talk rarely about the nature of scientific models and provide few opportunities for students to think about it; and, 6) Teachers in practice think that the value of using models should be appraised in consideration of the pedagogical intentions of the teacher. Implications for science education and science education research were discussed.

키워드

참고문헌

  1. 교육인적자원부 (2007). 과학과 교육과정. 서울: 저자
  2. 손민호 (2002). 교과 내용으로서의 실천적 지식에 대한 이해와 오해: 과학과 실험 수업의 경우의 관점의 시사. 교육과정연구, 20(3), 243-369
  3. 오필석 (2006). 지구과학교육에서 활용되는 과학적 모델의 분류틀 개발. 한국지구과학회 춘계학술발표회 논문집, 92
  4. 오필석 (2007). 중등학교 지구과학 교사들의 과학적 설명: 논리적 형식과 담화적 특징 분석. 한국과학교육학회지, 27(1), 37-49
  5. 오필석, 전원선, 유정문 (2007). 10학년 과학 교과서 지구 분야에 등장하는 과학적 모델 분석. 한국지구과학회지, 28(4), 393-404 https://doi.org/10.5467/JKESS.2007.28.4.393
  6. 이인효 (1991). 입시 위주 수업의 실제. 교육이론, 6(1), 93-113
  7. 이진봉 (2006). 지구과학 그래프의 유형과 고등학생의 그래프 해석 능력 분석. 서울대학교 대학원 석사학위 논문
  8. American Association for the Advancement of Science (1990). Science for all Americans. New York: Oxford University Press
  9. Baker, V. R. (1999). Geosemiosis. GSA Bulletin, 5, 633-645
  10. Buckley, B. C. & Boulter, C. J. (2000). Investigating the role of representations and expressed models in building mental models. In J. K. Gilbert & C. J. Boulter (eds.), Developing models in science education (pp. 119-135). Dordrecht, The Netherlands: Kluwer Academic Publishers
  11. Cleland, C. E. (2002). Methodological and epistemic differences between historical science and experimental science. Philosophy of Science, 69, 474-196 https://doi.org/10.1086/342453
  12. Clement, J. (1989). Learning via model construction and criticism In G. Glover, R. Ronning, & C. Reynolds (Eds.), Handbook of creativity: Assessment, theory and research (pp. 341-381). New York, Plenum
  13. Crowder, E. M. (1996). Gestures at work in sense-making science talk. The Journal of Learning Sciences, 5(3), 173-208 https://doi.org/10.1207/s15327809jls0503_2
  14. Dodick, J. & Orion, N. (2003). Geology as an historical science: Its perception within science and the education system. Science & Education, 12, 197-211 https://doi.org/10.1023/A:1023096001250
  15. Engelhardt, W. von & Zimmermann, J. (1982). Theory of earth science (translated by L. Fischer). Cambridge, UK: Cambridge University Press
  16. Franco, C., de Barros, H. L., Colinvaux, D., Krapas, S., Queiroz, G., & Alves, F. (1999). From scientists' and inventors' minds to some scientific and technological products: Relationships between theories, models, mental models and conceptions. International Journal of Science Education, 21(3), 277-291 https://doi.org/10.1080/095006999290705
  17. Frodeman, R. (Ed.) (2000). Earth matters: The earth sciences, philosophy, and the claims of community. Upper Saddle River, NJ: Prentice-Hall
  18. Giere, R. N. (1988). Explaining science: A cognitive approach. Chicago, IL: University of Chicago Press
  19. Giere, R. N. (1994). The cognitive structure of scientific theories. Philosophy of Science, 61, 276-296 https://doi.org/10.1086/289800
  20. Giere, R. N. (1999). Science without laws. Chicago, IL: The University of Chicago Press
  21. Gilbert, J. K. (2004). Models and modelling: Routes to more authentic science education. International Journal of Science Education, 2, 115-130 https://doi.org/10.1007/s10763-004-3186-4
  22. Gilbert, J. K. (Ed.) (2005). Visualization in science education. Dordrecht, The Netherlands: Springer
  23. Gilbert, J. K. & Boulter, C. J. (Eds.) (2000), Developing models in science education. Dordrecht, The Netherlands: Kluwer Academic Publishers
  24. Gilbert, J. K., Boulter, C., & Rutherford, M. (1998). Models in explanations, Part 1: Horses for courses? International Journal of Science Education, 20(1), 83-97 https://doi.org/10.1080/0950069980200106
  25. Gilbert, S. W. & Ireton, S. W. (2003). Understanding models in earth and space science. Arlington, VA: NSTA press
  26. Gobert, J. D. (2000). A typology of causal models for plate tectonics: Inferential power and barriers to understanding. International Journal of Science Education, 22(9), 937-977 https://doi.org/10.1080/095006900416857
  27. Gobert, J. D. (2005). The effects of different learning tasks on model-building in plate tectonics: Diagramming versus explaining. Journal of Geoscience Education, 53(4), 444-455 https://doi.org/10.5408/1089-9995-53.4.444
  28. Gobert, J. D. & Clement, J. J. (1999). Effect of student-generated diagram versus student-generated summaries on conceptual understanding of causal and dynamic knowledge in plate tectonics. Journal of Research in Science Teaching, 26(1), 39-53
  29. Gobert, J. D. & Pallant, A. (2004). Fostering students' epistemologies of models via authentic model-based tasks. Journal of Science Education and Technology, 13(1), 7-22 https://doi.org/10.1023/B:JOST.0000019635.70068.6f
  30. Greca, I. M. & Moreira, M. A. (2000). Mental models, conceptual models, and modelling. International Journal of Science Education, 22(1), 1-11 https://doi.org/10.1080/095006900289976
  31. Grosslight, L., Unger, C., Jay, E., & Smith, C. L. (1991). Understanding models and their use in science: Conceptions of middle and high school students and experts. Journal of Research in Science Teaching, 28(9), 799-822 https://doi.org/10.1002/tea.3660280907
  32. Halloun, I. A. (2004). Modeling theory in science education. Dordrecht, The Netherlands: Kluwer Academic Publishers
  33. Justi, R. S. & Gilbert, J. K. (2002). Science teachers' knowledge about and attitudes towards the use of models and modelling in learning science. International Journal of Science Education, 24(12), 1273-1292 https://doi.org/10.1080/09500690210163198
  34. Justi, R. S. & Gilbert, J. K. (2003). Teachers' views on the nature of models. International Journal of Science Education, 25(11), 1369-1386 https://doi.org/10.1080/0950069032000070324
  35. Johnson, J. K. & Reynolds, S. J. (2005). Concept sketches? Using student- and instructor-generated, annotated sketches for learning, teaching, and assessment in geology courses. Journal of Geoscience Education, 53(1), 85-95 https://doi.org/10.5408/1089-9995-53.1.85
  36. Kleinhans, M.G., Buskes, C. J. J., & de Regt, H. W. (2005). Terra Incognita: Explanation and reducation in earth science. International Studies in the Philosophy of Science, 19(3), 289-317 https://doi.org/10.1080/02698590500462356
  37. Kress, G., Jewitt, C., Ogborn, J., & Tsatsarelis, C. (2001). Multimodal teaching and learning: The rhetorics of the science classroom London, UK: Continuum
  38. Kress, G., Ogborn, J., & Martins, I. (1998). A satellite view of language: Some lessons from science classrooms. Language Awareness, 7(2&3), 69-89 https://doi.org/10.1080/09658419808667102
  39. Lemke, J. (1998). Multiplying meaning: Visual and verbal semiotics in scientific text. In J. R. Martin & R. Veel (Eds.), Reading science: Critical and functional perspectives on discourse of science (pp. 87-113). New York: Routledge
  40. Mayer, R. E. (1989). Models for understanding. Review of Educational Research, 59(1), 43-64 https://doi.org/10.3102/00346543059001043
  41. National Research Council (1996). National Science Education Standards. Washington, DC: National Academy Press
  42. Nersessian, N. (1992). How do scientists think? Capturing the dynamics of conceptual change in science. In R. N. Giere (Ed.), Cognitive models of science (pp. 3-44). Minneapolis, MN: University of Minnesota Press
  43. Oreskes, N. (2003). The role of quantitative models in science. In C. D. Canham, J. J. Cole, & W. K. Lauenroth (Eds.), Models in ecosystem science (pp. 13-31). Princeton, NJ: Princeton University Press
  44. Parker, W. S. (2006). Understanding pluralism in climate modeling. Foundations of Science, 11, 349- 368 https://doi.org/10.1007/s10699-005-3196-x
  45. Raia, F. (2005). Students' understanding of complex dynamic systems. Journal of Geoscience Education, 53(3), 297-308 https://doi.org/10.5408/1089-9995-53.3.297
  46. Reynolds, S. J., Johnson, J. K., Pibuvm, M. D., Leedy, D. E., Coyan, J. A., & Busch, M. M. (2005). Visualization in undergraduate geology courses. In J. K. Gilbert (Ed.), Visualization in science education (pp. 253-266). Dordrecht, The Netherlands: Springer
  47. Rotbain, Y., Marbach-Ad, G., & Stavy, R. (2006). Effect of bead and illustrations models on high school students' achievement in molecular genetics. Journal of Research in Science Teaching, 43(5), 500-529 https://doi.org/10.1002/tea.20144
  48. Schwarz, C. V. & Gwekwerere, Y. N. (2007). Using a guided inquiry and modeling instructional framework (EIMA) to support perservice K-8 science teaching. Science Education, 91, 158-186 https://doi.org/10.1002/sce.20177
  49. Schwarz, C. V. & White, B. Y. (2005). Metamodeling knowledge: Developing students' understanding of scientific modeling. Cognition and Instruction, 23(2), 165-205 https://doi.org/10.1207/s1532690xci2302_1
  50. Steer, D. N., Knight, C. C., Owens, K. D., & McConnell, D. A. (2005). Challenging students ideas about Earth's interior structure using a model-based, conceptual change approach in a large class setting. Journal of Geoscience Education, 53(4), 415-421 https://doi.org/10.5408/1089-9995-53.4.415
  51. Strauss, A. (1987). Qualitative analysis for social scientists. Cambridge, MA: Cambridge University Press
  52. Suppe, F. (1972). What's wrong with the received view on the structure of scientific theories? Philosophy of Science, 39, 1-19 https://doi.org/10.1086/288405
  53. van Driel, J. H. & Verloop, N. (1999). Teachers' knowledge of models and modelling in science. International Journal of Science Education, 21(11), 1141-1153 https://doi.org/10.1080/095006999290110
  54. van Driel, J. H. & Verloop, N. (2002). Experienced teachers' knowledge of teaching and learning of models and modelling in science education. International Journal of Science Education, 24(12), 1255-1272 https://doi.org/10.1080/09500690210126711
  55. van Joolingen, W. (2004). Roles of modeling in inquiry learning. Paper presented at the IEEE International Conference on Advanced Learning Technologies, Joensuu, Finland