• Title/Summary/Keyword: Dimensional Partitioning

Search Result 71, Processing Time 0.023 seconds

Quantification of Diesel in Soils using the Partitioning Tracer Method with Two-dimensional Soil Box (분배성 추적자 기법을 이용한 디젤 오염 토양의 정량적 오염도 평가에 관한 2차원 토조 실험 연구)

  • Rhee, Sung-Su;Lee, Gwang-Hun;Park, Jun-Boum
    • Journal of Soil and Groundwater Environment
    • /
    • v.15 no.1
    • /
    • pp.66-72
    • /
    • 2010
  • The partitioning tracer method is to estimate the residual saturation of nonaqueous phase liquid (NAPL) in soils by analyzing tracer's retardation induced by the reversible partitioning of tracer with NAPL. This study is to estimate the residual diesel saturation in soils using the partitioning tracer method. Two-dimensional soil box was used to represent the 2-dimensional flows of groundwater and tracer solution in the saturated aquifer, and the soil box was filled with soil and then saturated with water. The residual diesel saturation was induced in saturated soil, and the partitioning tracer method was applied. The results from batch-partitioning experiment indicated that the diesel-water partitioning was linear with respect to tracer's concentration, and the partition coefficient of tracer between diesel and water was measured by their linearities. The groundwater flow in the saturated aquifer was simulated in the 2-dimensional soil box, and the residual diesel contamination was visually identified. The results from the partitioning tracer method with or without diesel in soils confirmed that 4-methyl-2-pentanol, 2-ethyl-1-butanol and 1-hexanol, can be used as a detecting method for diesel contamination. By the accuracies of estimations for diesel contamination using the partitioning tracer method, 2-ethyl-1- butanol showed the highest accuracy with 83%.

A Cyclic Sliced Partitioning Method for Packing High-dimensional Data (고차원 데이타 패킹을 위한 주기적 편중 분할 방법)

  • 김태완;이기준
    • Journal of KIISE:Databases
    • /
    • v.31 no.2
    • /
    • pp.122-131
    • /
    • 2004
  • Traditional works on indexing have been suggested for low dimensional data under dynamic environments. But recent database applications require efficient processing of huge sire of high dimensional data under static environments. Thus many indexing strategies suggested especially in partitioning ones do not adapt to these new environments. In our study, we point out these facts and propose a new partitioning strategy, which complies with new applications' requirements and is derived from analysis. As a preliminary step to propose our method, we apply a packing technique on the one hand and exploit observations on the Minkowski-sum cost model on the other, under uniform data distribution. Observations predict that unbalanced partitioning strategy may be more query-efficient than balanced partitioning strategy for high dimensional data. Thus we propose our method, called CSP (Cyclic Spliced Partitioning method). Analysis on this method explicitly suggests metrics on how to partition high dimensional data. By the cost model, simulations, and experiments, we show excellent performance of our method over balanced strategy. By experimental studies on other indices and packing methods, we also show the superiority of our method.

A Compact Divide-and-conquer Algorithm for Delaunay Triangulation with an Array-based Data Structure (배열기반 데이터 구조를 이용한 간략한 divide-and-conquer 삼각화 알고리즘)

  • Yang, Sang-Wook;Choi, Young
    • Korean Journal of Computational Design and Engineering
    • /
    • v.14 no.4
    • /
    • pp.217-224
    • /
    • 2009
  • Most divide-and-conquer implementations for Delaunay triangulation utilize quad-edge or winged-edge data structure since triangles are frequently deleted and created during the merge process. How-ever, the proposed divide-and-conquer algorithm utilizes the array based data structure that is much simpler than the quad-edge data structure and requires less memory allocation. The proposed algorithm has two important features. Firstly, the information of space partitioning is represented as a permutation vector sequence in a vertices array, thus no additional data is required for the space partitioning. The permutation vector represents adaptively divided regions in two dimensions. The two-dimensional partitioning of the space is more efficient than one-dimensional partitioning in the merge process. Secondly, there is no deletion of edge in merge process and thus no bookkeeping of complex intermediate state for topology change is necessary. The algorithm is described in a compact manner with the proposed data structures and operators so that it can be easily implemented with computational efficiency.

The Evaluation of Petroleum Contamination in Heterogeneous Media Using Partitioning Tracer Method (분배성 추적자 시험법을 이용한 불균질 지반의 유류 오염도 평가)

  • Kim, Eun-Hyup;Rhee, Sung-Su;Park, Jun-Boum
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2009.09a
    • /
    • pp.1372-1377
    • /
    • 2009
  • For the remediation of the subsurface contaminated by nonaqueous phase liquids(NAPLs), it is important to characterize the NAPL zone properly. Conventional characterization methods provide data at discrete points. To overcome the weak points of conventional characterization methods, the partitioning tracer method has been developed and studied. The average saturation of NAPL($S_n$), which is the representative and continuous saturation value within contaminated site, can be calculated by comparing the transport of the partitioning tracers to that of the conservative tracer in the partitioning tracer method. In this study, the application of the partitioning tracer method in heterogeneous media was investigated. To represent the heterogeneous condition of subsurface, a two-dimensional soil box was divided into four layers and each layer contained different sized soils. Soils in the soil box were contaminated by the mixture of kerosene and diesel, and partitioning tracer tests were conducted before and after the contamination using methanol as conservative tracer and 4-methyl-2-pentanol, 2-ethyl-1-butanol, and hexanol as partitioning tracers. The response curves of partitioning tracers from contaminated soils were separated and retarded in comparison with those from non-contaminated soils. The contamination of soils by NAPLs, therefore, can be detected by partitioning tracer method considering these retardations of tracers. From our experiment condition, the average saturation of NAPLs calculated by partitioning tracer method using the methanol as conservative tracer and hexanol as partitioning tracer showed the highest accuracy, though all results were underestimated. Further studies, therefore, were needed for improving the accuracy using the partitioning tracer test in heterogeneous media.

  • PDF

Declustering of High-dimensional Data by Cyclic Sliced Partitioning (주기적 편중 분할에 의한 다차원 데이터 디클러스터링)

  • Kim Hak-Cheol;Kim Tae-Wan;Li Ki-Joune
    • Journal of KIISE:Databases
    • /
    • v.31 no.6
    • /
    • pp.596-608
    • /
    • 2004
  • A lot of work has been done to reduce disk access time in I/O intensive systems, which store and handle massive amount of data, by distributing data across multiple disks and accessing them in parallel. Most of the previous work has focused on an efficient mapping from a grid cell to a disk number on the assumption that data space is regular grid-like partitioned. Although we can achieve good performance for low-dimensional data by grid-like partitioning, its performance becomes degenerate as grows the dimension of data even with a good disk allocation scheme. This comes from the fact that they partition entire data space equally regardless of distribution ratio of data objects. Most of the data in high-dimensional space exist around the surface of space. For that reason, we propose a new declustering algorithm based on the partitioning scheme which partition data space from the surface. With an unbalanced partitioning scheme, several experimental results show that we can remarkably reduce the number of data blocks touched by a query as grows the dimension of data and a query size. In this paper, we propose disk allocation schemes based on the layout of the resultant data blocks after partitioning. To show the performance of the proposed algorithm, we have performed several experiments with different dimensional data and for a wide range of number of disks. Our proposed disk allocation method gives a performance within 10 additive disk accesses compared with strictly optimal allocation scheme. We compared our algorithm with Kronecker sequence based declustering algorithm, which is reported to be the best among the grid partition and mapping function based declustering algorithms. We can improve declustering performance up to 14 times as grows dimension of data.

Performance Improvement of Declustering Algorithm by Efficient Grid-Partitioning Multi-Dimensional Space (다차원 공간의 효율적인 그리드 분할을 통한 디클러스터링 알고리즘 성능향상 기법)

  • Kim, Hak-Cheol
    • Journal of Korea Spatial Information System Society
    • /
    • v.12 no.1
    • /
    • pp.37-48
    • /
    • 2010
  • In this paper, we analyze the shortcomings of the previous declustering methods, which are based on grid-like partitioning and a mapping function from a cell to a disk number, for high-dimensional space and propose a solution. The problems arise from the fact that the number of splitting is small(for the most part, binary-partitioning is sufficient), and the side length of a range query whose selectivity is small is quite large. To solve this problem, we propose a mathematical model to estimate the performance of a grid-like partitioning method. With the proposed estimation model, we can choose a good grid-like partitioning method among the possible schemes and this results in overall improvement in declustering performance. Several experimental results show that we can improve the performance of a previous declustering method up to 2.7 times.

Clustering Data with Categorical Attributes Using Inter-dimensional Association Rules and Hypergraph Partitioning (차원간 연관관계와 하이퍼그래프 분할법을 이용한 범주형 속성을 가진 데이터의 클러스터링)

  • 이성기;윤덕균
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.24 no.65
    • /
    • pp.41-50
    • /
    • 2001
  • Clustering in data mining is a discovery process that groups a set of data such that the intracluster similarity is maximized and intercluster similarity is minimized. The discovered clusters from clustering process are used to explain the characteristics of the data distribution. In this paper we propose a new methodology for clustering related transactions with categorical attributes. Our approach starts with transforming general relational databases into a transactional databases. We make use of inter-dimensional association rules for composing hypergraph edges, and a hypergraph partitioning algorithm for clustering the values of attributes. The clusters of the values of attributes are used to find the clusters of transactions. The suggested procedure can enhance the interpretation of resulting clusters with allocated attribute values.

  • PDF

Spherical Pyramid-Technique : An Efficient Indexing Technique for Similarity Search in High-Dimensional Data (구형 피라미드 기법 : 고차원 데이터의 유사성 검색을 위한 효율적인 색인 기법)

  • Lee, Dong-Ho;Jeong, Jin-Wan;Kim, Hyeong-Ju
    • Journal of KIISE:Software and Applications
    • /
    • v.26 no.11
    • /
    • pp.1270-1281
    • /
    • 1999
  • 피라미드 기법 1 은 d-차원의 공간을 2d개의 피라미드들로 분할하는 특별한 공간 분할 방식을 이용하여 고차원 데이타를 효율적으로 색인할 수 있는 새로운 색인 방법으로 제안되었다. 피라미드 기법은 고차원 사각형 형태의 영역 질의에는 효율적이나, 유사성 검색에 많이 사용되는 고차원 구형태의 영역 질의에는 비효율적인 면이 존재한다. 본 논문에서는 고차원 데이타를 많이 사용하는 유사성 검색에 효율적인 새로운 색인 기법으로 구형 피라미드 기법을 제안한다. 구형 피라미드 기법은 먼저 d-차원의 공간을 2d개의 구형 피라미드로 분할하고, 각 단일 구형 피라미드를 다시 구형태의 조각으로 분할하는 특별한 공간 분할 방법에 기반하고 있다. 이러한 공간 분할 방식은 피라미드 기법과 마찬가지로 d-차원 공간을 1-차원 공간으로 변환할 수 있다. 따라서, 변환된 1-차원 데이타를 다루기 위하여 B+-트리를 사용할 수 있다. 본 논문에서는 이렇게 분할된 공간에서 고차원 구형태의 영역 질의를 효율적으로 처리할 수 있는 알고리즘을 제안한다. 마지막으로, 인위적 데이타와 실제 데이타를 사용한 다양한 실험을 통하여 구형 피라미드 기법이 구형태의 영역 질의를 처리하는데 있어서 기존의 피라미드 기법보다 효율적임을 보인다.Abstract The Pyramid-Technique 1 was proposed as a new indexing method for high- dimensional data spaces using a special partitioning strategy that divides d-dimensional space into 2d pyramids. It is efficient for hypercube range query, but is not efficient for hypersphere range query which is frequently used in similarity search. In this paper, we propose the Spherical Pyramid-Technique, an efficient indexing method for similarity search in high-dimensional space. The Spherical Pyramid-Technique is based on a special partitioning strategy, which is to divide the d-dimensional data space first into 2d spherical pyramids, and then cut the single spherical pyramid into several spherical slices. This partition provides a transformation of d-dimensional space into 1-dimensional space as the Pyramid-Technique does. Thus, we are able to use a B+-tree to manage the transformed 1-dimensional data. We also propose the algorithm of processing hypersphere range query on the space partitioned by this partitioning strategy. Finally, we show that the Spherical Pyramid-Technique clearly outperforms the Pyramid-Technique in processing hypersphere range queries through various experiments using synthetic and real data.

Data Retrieval by Multi-Dimensional Signal Space Partitioning (다차원 신호공간 분할을 이용한 데이터 복원)

  • Jeon, Taehyun
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.14 no.6
    • /
    • pp.674-677
    • /
    • 2004
  • This paper deals with a systematic approach for the construction of the fixed-delay tree search (FDTS) detector in the intersymbol interference channel. The approach is based on the efficient multi-dimensional space partitioning. The Voronoi diagram (VoD) and the Delaunay tessellation (DT) of the multi-dimensional space are applied to implement the algorithm. In the proposed approach, utilizing the geometric information contained in the VOD/DT, the relative location of the observation sequence is determined which has been shown to reduce the implementation complexity. Detailed construction procedures are discussed followed by an example from the intersymbol interference communication channel.

Performance Analysis on Declustering High-Dimensional Data by GRID Partitioning (그리드 분할에 의한 다차원 데이터 디클러스터링 성능 분석)

  • Kim, Hak-Cheol;Kim, Tae-Wan;Li, Ki-Joune
    • The KIPS Transactions:PartD
    • /
    • v.11D no.5
    • /
    • pp.1011-1020
    • /
    • 2004
  • A lot of work has been done to improve the I/O performance of such a system that store and manage a massive amount of data by distributing them across multiple disks and access them in parallel. Most of the previous work has focused on an efficient mapping from a grid ceil, which is determined bY the interval number of each dimension, to a disk number on the assumption that each dimension is split into disjoint intervals such that entire data space is GRID-like partitioned. However, they have ignored the effects of a GRID partitioning scheme on declustering performance. In this paper, we enhance the performance of mapping function based declustering algorithms by applying a good GRID par-titioning method. For this, we propose an estimation model to count the number of grid cells intersected by a range query and apply a GRID partitioning scheme which minimizes query result size among the possible schemes. While it is common to do binary partition for high-dimensional data, we choose less number of dimensions than needed for binary partition and split several times along that dimensions so that we can reduce the number of grid cells touched by a query. Several experimental results show that the proposed estimation model gives accuracy within 0.5% error ratio regardless of query size and dimension. We can also improve the performance of declustering algorithm based on mapping function, called Kronecker Sequence, which has been known to be the best among the mapping functions for high-dimensional data, up to 23 times by applying an efficient GRID partitioning scheme.