• Title/Summary/Keyword: Dimensional Film

Search Result 681, Processing Time 0.029 seconds

Transmission Electron Microscopy Observation of (202) and (211) Twins in Monoclinic $ZrO_2$ Thin Film

  • Cheol Seong Hwang;Geun Hong Kim;Chang Hwan Chum;Hyeong Joon Kim
    • The Korean Journal of Ceramics
    • /
    • v.1 no.3
    • /
    • pp.143-146
    • /
    • 1995
  • Twins along(202) and (211) planes are observed in monoclinic $ZrO_2$ thin film, which is deposited on Si substrate by MOCVD at $350^{\circ}C$ and annealed at $1150^{\circ}C$ for 10 hours in air. These types of twin have not been reported in monoclinic $ZrO_2$. The twins seem to be originated from the two dimensional tensile stresses applied to the $ZrO_2$ thin film due to the different thermal expansions of $ZrO_2$ thin film and Si substrate.

  • PDF

Three-Dimensional Analysis on Drying Process of a Cylindrical Thin Film Layer of Sludge under Uniform Heating (일정온도로 가열되는 원통 형상 슬러지 박막의 건조에 대한 3차원 해석)

  • Lee, Kong-Hoon;Kim, Ook-Joong
    • Proceedings of the SAREK Conference
    • /
    • 2009.06a
    • /
    • pp.1326-1331
    • /
    • 2009
  • Drying process in the cylindrical thin film layer of sludge with the thickness less than a few millimeters has been investigated. Thin film drying is specially designed and used to dry the viscous materials like sewage sludge. The thin film layer of sludge is dried on the metallic cylindrical surface through which thermal energy is supplied to the layer during drying. The wall temperature is assumed to be constant during drying in the present study for the simplification. In order to solve the equations, the mass transfer rate on the drying surface should be determined. The mass flux of evaporated water vapor on the surface is estimated with the formulation given in the literature. The effect of some physical parameters on drying has been examined to figure out the drying characteristics of the sludge layer.

  • PDF

Two-Dimensional Device Simulator TFT2DS for Hydrogenated Amorphous Silicon Thin Film Transistors (수소화된 비정질 실리콘 박막 트랜지스터의 이차원 소자 시뮬레이터 TFT2DS)

  • Choe, Jong-Seon;Neudeck, Gerold W.
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.48 no.1
    • /
    • pp.1-11
    • /
    • 1999
  • Hyrdogenated amorphous silicon thin film transistors are used as a pixel switching device of TFT-LCDs and very active research works on a-Si:H TFTs are in progress. Further development of the technology based on a-Si:H TFTs depends on the increased understanding of the device physics and the ability to accurately simulate the characteristics of them. A two-dimensional device simulator based on the realistic and flexible physical models can guide the device designs and their optimizations. A non-uniform finite-difference TFT Simulation Program, TFT2DS has been developed to solve the electronic transport equations for a-Si:H TFTs. In TFT2DS, many of the simplifying assumptions are removed. The developed simulator was used to calculate the transfer and output characteristics of a-Si:H TFTs. The measured data were compared with the simulated ones for verifying the validity of TFT2DS. Also the transient behaviors of a-Si:H TFTs were calculated even if the values of the related parameters are not accurately specified.

  • PDF

Sticking Characteristics in BiSrCaCuO Thin Film Fabricated by Layer-by-Layer Sputtering Method (순차 스퍼터법으로 제작한 BiSrCaCuO 박막의 부착 특성)

  • Cheon, Min-Woo;Park, Yong-Pil;Kim, Jeong-Ho
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.05d
    • /
    • pp.45-48
    • /
    • 2003
  • BiSrCaCuO thin films were fabricated by atomic layer-by-layer deposition using an ion beam sputtering method. 10 wt% and 90 wt% ozone mixed with oxygen were used with ultraviolet light irradiation to assist oxidation. At early stages of the atomic layer by layer deposition, two dimensional epitaxial growth which covers the substrate surface would be suppressed by the stress and strain caused by the lattice misfit, then three dimensional growth takes place. Since Cu element is the most difficult to oxidize, only Sr and Bi react with each other predominantly, and forms a buffer layer on the substrate in an amorphous-like structure, which is changed to $SrBi_2O_4$ by in-situ anneal.

  • PDF

Modeling of plasma etching and development of three-dimensional topography simulator (플라즈마 식각 모델링 및 3차원 토포그래피 시뮬레이터 개발)

  • 권오섭;이제희;윤상호;반용찬;김연태;원태영
    • Journal of the Korean Institute of Telematics and Electronics D
    • /
    • v.35D no.2
    • /
    • pp.25-32
    • /
    • 1998
  • In this paper, we report the result of the three-dimensional topography simultor, 3D-SURFILER(SURface proFILER) for the simulation of topographical evalution of the surface, curing a plasma etching process. We employed cell-removal algorithm to represent the topographical evoluation of the surface. The visibility with shadow effect was developed and applied to the spillover algorithm. To demonstrate the capability of 3D-SURFILER, we compared with simulated profiles with the SEM picture for dry and reactive ion etching(RIE) of the Si$_{3}$N$_{4}$ film and Pt film.

  • PDF

Fabrication of Infrared Filters for Three-Dimensional CMOS Image Sensor Applications

  • Lee, Myung Bok
    • Transactions on Electrical and Electronic Materials
    • /
    • v.18 no.6
    • /
    • pp.341-344
    • /
    • 2017
  • Infrared (IR) filters were developed to implement integrated three-dimensional (3D) image sensors that are capable of obtaining both color image and depth information at the same time. The combination of light filters applicable to the 3D image sensor is composed of a modified IR cut filter mounted on the objective lens module and on-chip filters such as IR pass filters and color filters. The IR cut filters were fabricated by inorganic $SiO_2/TiO_2$ multilayered thin-film deposition using RF magnetron sputtering. On-chip IR pass filters were synthetized by dissolving various pigments and dyes in organic solvents and by subsequent patterning with photolithography. The fabrication process of the filters is fairly compatible with the complementary metal oxide semiconductor (CMOS) process. Thus, the IR cut filter and IR pass filter combined with conventional color filters are considered successfully applicable to 3D image sensors.

SURFACE ROUGHNESS EFFECTS ON THE COERCIVITY OF THIN FILM HEADS

  • Kim, Hyunkyu;Horvath, M. Pardavi
    • Journal of the Korean Magnetics Society
    • /
    • v.5 no.5
    • /
    • pp.663-666
    • /
    • 1995
  • The domain wall motion coercivity, $H_{c}$, of magnetic materials arises from the dependence of the wall energy on localized changes in material parameters (magnetization, anisotropy, exchange energy densities). However, in an otherwise perfectly homogeneous material, the domain wall energy might change due to the change in the volume of the wall versus the wall position. Thus, any surface roughness contributes to the coercivity. Assuming different two-dimensional surface profiles, characterized by average wavelengths ${\lambda}_{x}$ and ${\lambda}_{y}$, and relative thickness variations dh/h, the coercivity due to the surface roughness has been calculated. Compared to the one dimensional case, the 2D coercivity is reduced. Depending on the ratio of ${\lambda}$ to the domain wall width, $H_{c}$ has a maximum around 2, and increasing with dh/h. With the decreasing thickness of the thin film and GMR heads, it might be the domain factor in determining the coercivity.

  • PDF

Photoactivated Metal Oxide-based Chemiresistors: Revolutionizing Gas Sensing with Ultraviolet Illumination

  • Sunwoo Lee;Gye Hyeon Lee;Myungwoo Choi;Gana Park;Dakyung Kim;Sangbin Lee;Jeong-O Lee;Donghwi Cho
    • Journal of Sensor Science and Technology
    • /
    • v.33 no.5
    • /
    • pp.274-287
    • /
    • 2024
  • Chemiresistors play a crucial role in numerous research fields, including environmental monitoring, healthcare, and industrial safety, owing to their ability to detect and quantify gases with high sensitivity and specificity. This review provides a comprehensive overview of the recent advancements in photoactivated chemiresistors and emphasizes their potential for the development of highly sensitive, selective, and low-power gas sensors. This study explores a range of structural configurations of sensing materials, from zero-dimensional quantum dots to three-dimensional, porous nanostructures and examines the impact of these designs on the photoactivity, gas interactions, and overall sensor performance-including gas responses and recovery rates. Particular focus is placed on metal-oxide semiconductors and the integration of ultraviolet micro-light emitting diodes, which have gained attention as key components for next-generation sensing technologies owing to their superior photoactivity and energy efficiency. By addressing existing technical challenges, such as limited sensitivity, particularly at room temperature (~22℃), this paper outlines future research directions, highlighting the potential of photoactivated chemiresistors in developing high-performance, ultralow-power gas sensors for the Internet of Things and other advanced applications.

Unsteady Analysis of the Conduction-Dominated Three-Dimensional Close-Contact Melting (열전도가 주도적인 삼차원 접촉융해에 대한 비정상 해석)

  • Yoo, Hoseon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.23 no.8
    • /
    • pp.945-956
    • /
    • 1999
  • This work reports a set of approximate analytical solutions describing the initial transient process of close-contact melting between a rectangular parallelepiped solid and a flat plate on which either constant temperature or constant heat flux is imposed. Not only relative motion of the solid block tangential to the heating plate, but also the density difference between the solid and liquid phase is incorporated in the model. The thin film approximation reduces the force balance between the solid weight and liquid pressure, and the energy balance at the melting front into a simultaneous ordinary differential equation system. The normalized model equations admit compactly expressed analytical solutions which include the already approved two-dimensional solutions as a subset. In particular, the normalized liquid film thickness is independent of all pertinent parameters, thereby facilitating to define the transition period of close-contact melting. A unique behavior of the solid descending velocity due to the density difference is also resolved by the present solution. A new geometric function which alone represents the three-dimensional effect is introduced, and its properties are clarified. One of the representative results is that heat transfer is at least enhanced at the expense of the increase in friction as the cross-sectional shape deviates from the square under the same contact area.

A SPICE-based 3-dimensional circuit model for Light-Emitting Diode (SPICE 기반의 발광 다이오드 3차원 회로 모델)

  • Eom, Hae-Yong;Yu, Soon-Jae;Seo, Jong-Wook
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.44 no.2
    • /
    • pp.7-12
    • /
    • 2007
  • A SPICE-based 3-dimensional circuit model of LED(Light-Emitting Diode) was developed for the design optimization and analysis of high-brightness LEDs. An LED is represented as an array of pixel LEDs with small preassigned areas, and each of the pixel LEDs is composed of circuit networks representing the thin-film layers(n-metal, n- and p-type semiconductor layers, and p-metal), ohmic contacts, and pn-junctions. Each of the thin-film layers and contact resistances is modeled by a resistance network, and the pn-junction is modeled by a conventional pn-junction diode. It has been found that the simulation results using the model and the corresponding parameters precisely fit the measured LED characteristics.