• Title/Summary/Keyword: Dimensional Control

Search Result 2,861, Processing Time 0.032 seconds

Spillover Suppression in a Flexible Structure using Eigenstructure Assignment (고유구조지정법을 이용한 유연구조물의 스필오버억제)

  • Park, Un-Sik;Choi, Jae-Weon
    • Proceedings of the KSME Conference
    • /
    • 2000.04a
    • /
    • pp.499-504
    • /
    • 2000
  • Since large space structures(LSS) such as a space station, a solar power station satellite, etc., are theoretically distributed parameter and infinite-dimensional system, they have to be modeled into large finite-dimensional systems for control system design. Besides, there are fundamental problems in active vibration control of the large flexible structures. For example, a modeled large finite-dimensional system must be controlled with a much smaller dimensional controller. This causes the spillover phenomenon which degrades the control performances and reduces the stability margin. Furthermore, it may destabilize the entire feedback control system. In this paper, we proposed a novel control method for spillover suppression in the control of large flexible structures by using eigenstructure assignment. Its effectiveness in spillover suppression is investigated and verified by the numerical experiments using an example of the simply supported flexible beam which is modeled to have four controlled modes and eight uncontrolled modes.

  • PDF

Experimental Study of GA and Heuristic Control Rule based PID Controller for 2-Dimensional Inverted Pendulum (2차원 도립진자를 위한 GA 및 Heuristic한 제어규칙 기반 PID제어기의 실험적 연구)

  • 서강면;강문성
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.9 no.8
    • /
    • pp.623-631
    • /
    • 2003
  • We have fabricated the two-dimensional inverted pendulum system and designed its controller. The two-dimensional inverted pendulum system, which is composed of X-Y table, is actuated through timing belt by each of two geared DC motors. And the control goal is that the rod is always kept to a vertical position to any distrubance and is quickly moved to the desired position. Because this system has generally nonlinear dynamic characteristics and X-axis and Y-axis move together, it is very difficult to find its exact mathematical model and to design its controller. Therefore, we have designed the PID controller with simple structure and excellent performance. Genetic algorithm(GA), which is blown as one of probabilistic searching methods, and human's heuristic control strategy are introduced to design an optimal PID controller. The usefulness of the proposed GA based PID coefficient searching technique is verified through the experiments and computer simulations.

A New Control Volume Finite Element Method for Three Dimensional Analysis of Polymer Flow (고분자 유동의 3차원 해석을 위한 새로운 검사 체적 유한 요소법)

  • 이석원;윤재륜
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2003.05a
    • /
    • pp.461-464
    • /
    • 2003
  • A new control volume finite element method is proposed for three dimensional analysis of polymer flow. Tetrahedral finite element is employed and co-located interpolation procedure for pressure and velocity is implemented. Inclusion of pressure gradient term in the velocity shape functions prevents the checkerboard pressure field from being developed. Vectorial nature of pressure gradient is considered in the velocity shape function so that velocity profile in the limit of very small Reynolds number becomes physically meaningful. The proposed method was verified through three dimensional simulation of pipe flow problem for Newtonian and power-law fluid. Calculated pressure and velocity field showed an excellent agreement with analytic solutions for pressure and velocity. Driven-cavity problem, which is reported to yield checkerboard pressure filed when conventional finite element method is applied, could be solved without yielding checkerboard pressure field when the proposed control volume finite element method was applied. The proposed method could be successfully applied to the three dimensional mold filling problem.

  • PDF

Performance estimation model of the three-dimensional pointing tasks in virtual environment systems (가상환경에서의 3차원 포인팅작업 성능평가 모형)

  • 박재희;박경수
    • Proceedings of the ESK Conference
    • /
    • 1996.04a
    • /
    • pp.253-258
    • /
    • 1996
  • Virtual reality environment system is expected to be used as a new user interface tool oweing to its high immersiveness and high interactivity. To use VR interface effectively, we should identify the characteristics of the three-dimensional control tasks as if we did in two-dimensional graphic user interface environments. As a first step, we validated Fitts'law for the three-dimensional pointing tasks with the two input devices, Spaceball and Spacemouse. Different from the two-dimensional control tasks, VR pointing tasks needed inclusion of a new variable, size of the moving object, to Fitts'law. The modified

  • PDF

Analysis of 3-Dimensional Magnetic Field Distribution in CPM Considering Magnetization Vector Distribution and Design of CPM (자화 벡터 분포를 고려한 CPM의 3차원 자계 분포 해석 및 설계)

  • Lee, Cheol-Gyu;Gwon, Byeong-Il;Park, Seung-Chan;U, Gyeong-Il
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.51 no.10
    • /
    • pp.545-553
    • /
    • 2002
  • This paper is about the analysis of 3-dimensional magnetic field distribution in CPM(Convergence Purity Magnet) considering magnetization vector and the optimum design of CPM. The magnetization vector of CPM is obtained using 2-dimensional magnetization FEA(Finite Element Analysis) coupled with Priesach model. Using this magnetization vector of CPM, we analysed the 2-dimensional and 3-dimensional magnetostatic field of CPM and know that these analysis results are not equal. From experimental result, we know that the 3-dimensional analysis is accurate because the magnetic field distribution in CPM cannot be considered correctly by 2-dimensional analysis because of the shape of CPM. Finally, the optimum designing of CPM which control accurately the electron beam deflection in CRT(Cathode Ray Tube) was possible using 3-dimensional magnetic field analysis result.

Multi-Dimensional Reinforcement Learning Using a Vector Q-Net - Application to Mobile Robots

  • Kiguchi, Kazuo;Nanayakkara, Thrishantha;Watanabe, Keigo;Fukuda, Toshio
    • International Journal of Control, Automation, and Systems
    • /
    • v.1 no.1
    • /
    • pp.142-148
    • /
    • 2003
  • Reinforcement learning is considered as an important tool for robotic learning in unknown/uncertain environments. In this paper, we propose an evaluation function expressed in a vector form to realize multi-dimensional reinforcement learning. The novel feature of the proposed method is that learning one behavior induces parallel learning of other behaviors though the objectives of each behavior are different. In brief, all behaviors watch other behaviors from a critical point of view. Therefore, in the proposed method, there is cross-criticism and parallel learning that make the multi-dimensional learning process more efficient. By ap-plying the proposed learning method, we carried out multi-dimensional evaluation (reward) and multi-dimensional learning simultaneously in one trial. A special neural network (Q-net), in which the weights and the output are represented by vectors, is proposed to realize a critic net-work for Q-learning. The proposed learning method is applied for behavior planning of mobile robots.

External Force Control for Two Dimensional Contour Following ; Part 1. A Linear Control Approach

  • Park, Young-Chil;Kim, Sungkwun
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1992.10b
    • /
    • pp.130-134
    • /
    • 1992
  • The ability of a robot system to comply to an environment via the control of tool-environment interaction force is of vital for the successful task accomplishment in many robot application. This paper presents the implementation of external force control for two dimensional contour following task using a commercial robot system. Force accommodation is used since a constraint imposed in our work is not to modify the commercial robot system. A linear, decoupled model of two dimensional contour following system in the discrete time domain is derived first. Then the experimental verification of linear control is obtained using a PUMA 560 manipulator with standard Unimation controller, Astek FS6-120A six axis wrist force sensor attached externally to the arm and LSI-11173 microcomputer. Experimentally obtained data shows that the RMS contact force error is 0.8246 N when following the straight edge and 2.3768 N when following 40 mm radius curved contour.

  • PDF

Technology of Dimensional Control for Different Thickness Strip in Hot Strip Finishing Mills (열간 마무리압연에서 이종두께 강판의 치수제어기술)

  • Lee, Sang Ho;Park, Hong Bae;Park, Cheol Jae
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.21 no.8
    • /
    • pp.735-741
    • /
    • 2015
  • In this paper, we suggest a dimensional controller to produce a different thickness strip without adding production facilities at the same steel. We describe the model for the non-linear thickness and speed setup, and drive a variation of the speed and thickness with Talyor expansion. The control algorithm is composed of 8 steps and the transient condition is added in order to maintain a mass flow between stands. A simulator is developed in order to verify the algorithm, and includes a non-linear rolling model, the tension model, AGC model, the disturbance model, and so on. From the simulation results by disturbances, we show that the thickness, tension and looper angle are converged to the set condition when we change the rolling conditions.

A Fuzzy Control of a 3-dimensional Inverted Pendulum Using a 3-axis Cartesian Robot

  • Shin, Ho-sun;chu, Jun-Uk;Lee, Yun-Jung
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.176.1-176
    • /
    • 2001
  • Conventional researches almost have been focused on the one dimensional inverted pendulum. Recently, Sprenger et al[2] have researched a two dimensional inverted pendulum Observing human's action to control an inverted pendulum, one can recognize that human uses a three dimensional metier including the up and down motion. In this paper, we propose a fuzzy logic controller(FLC) of a new three dimensional inverted pendulum system. We derive a dynamic equation of the mechanism including a 3-axis cartesian robot and a inverted pendulum. We propose a design method of a fuzzy controller of the yaw and pitch angles of a inverted pendulum. In the design, the redundant degree-of-freedom(DOF) of the robot ...

  • PDF

Design of Flexible Die Punch and Control System for Three-dimensional Curved Forming Surface (3차원 성형곡면 구현을 위한 가변금형의 펀치 및 제어시스템 설계)

  • Seo, Y.H.;Heo, S.C.;Ku, T.W.;Kim, J.;Kang, B.S.
    • Transactions of Materials Processing
    • /
    • v.20 no.3
    • /
    • pp.206-213
    • /
    • 2011
  • A flexible die, which is composed of a number of punches with adjusted heights to form a three-dimensional curved surface, is a crucial part of a flexible forming technology. In this study, the punch and control system of the flexible die were designed. The flexible die is divided into three modules, namely, punch, control and joint, and the corresponding modules were developed. The punch module materializes a three-dimensional forming surface by the control module, which is composed of an AC servo motor set and a linear guide. The joint module is necessary for the sequential motion between the servo motor set and the punch module. A sequential motion algorithm for the AC servo motor set, that uses the data of the punch relative heights, was also proposed. Finally, a flexible stretch forming test was carried out using the presently designed flexible die.