• Title/Summary/Keyword: Dimension reductions

Search Result 8, Processing Time 0.028 seconds

Effects of Aerobic/non-aerobic Starvation Periods on the Physical Characteristics of Activated Sludge and Organic Removal Efficiency in SBR (폭기/비폭기 상태의 기근기간이 활성슬러지의 물리적 특성 및 유기물 제거에 미치는 영향)

  • Oh, Hye-Ran;Kim, Sang-Soo;Moon, Byung-Hyun;Yoon, Cho-Hee
    • Journal of Korean Society on Water Environment
    • /
    • v.26 no.2
    • /
    • pp.343-348
    • /
    • 2010
  • The objective of this study was to investigate the effects of starvation periods with aerobic or non-aerobic conditions on the organic removal efficiencies and physical characteristics of activated sludge for treating saline and non-saline wastewater. During the experiment, MLSS, MLVSS, sludge volume index (SVI), floc size and fractal dimension, $COD_{Mn}$ removal efficiencies were monitored. The reductions of MLSS, MLVSS and SVI with maintaining the sludge under a non-aerobic condition during starvation periods were smaller than those under a aerobic condition. Floc size, fractal dimension and $COD_{Mn}$ removal efficiencies were less decreased under non-aerobic condition than under aerobic condition. And SVI were strongly correlated with floc size and fractal dimension. Consequently, the result showed that maintaining the activated sludge under non-aerobic starvation conditions was better strategy than that under aerobic starvation conditions as it adapted and resisted to starvation.

The Measurement of Dose Distribution in the Presence of Air Cavity and Underdosing Effect Result from Lack of Electronic Equilibrium (조사면 내 공동의 존재에 따른 선량분포의 변화측정)

  • Cho, Jung-Hee
    • Journal of radiological science and technology
    • /
    • v.19 no.1
    • /
    • pp.81-87
    • /
    • 1996
  • When high energy photon beam is incident upon an air cavity interface the effect of ionization build-up observed. This phenomenon is resulting from the surface layers of the lesions are significant deficiency of electrons reaching the layers because of the replacement of solid scattering material by the air cavity, that is lack of electronic equilibrium. Measurement have been made in an acrylic phantom with a parallel plate chamber and high energy Photon beams, CO-60, 4MV, 6MV and 10MV X-rays have been investigated. The result of our study show that a significant effect was measured and was determined to be very dependent on field size, air cavity dimension and photon energy. The reductions were much larger for 10MV beam, underdosage at the interface was 12, 12.2, 16.9 and 20.6% for the CO-60, 4 MV, 6MV and 10MV, respectively. It was found that this non-equilibrium effect at the interface is more severe for the higher energy beams than that of lower energy beams and the larger cavity dimensions it is, the larger beam reductions we have. This problem is of clinical concern when lesions such as carcinoma beyond air cavities are irradiated, such as larynx, glottic and the patients with maxillectomy and ethmoidectomy and so forth.

  • PDF

STALE REDUCTIONS OF SINGULAR PLANE QUARTICS

  • Kang, Pyung-Lyun
    • Communications of the Korean Mathematical Society
    • /
    • v.9 no.4
    • /
    • pp.905-915
    • /
    • 1994
  • Let $M_g$ be the moduli space of isomorphism classes of genus g smooth curves. It is a quasi-projective variety of dimension 3g - 3, when $g > 2$. It is known that a complete subvariety of $M_g$ has dimension $< g-1 [D]$. In general it is not known whether this bound is rigid. For example, it is not known whether $M_4$ has a complete surface in it. But one knows that there is a complete curve through any given finite points [H]. Recently, an explicit example of a complete curve in moduli space is given in [G-H]. In [G-H] they constructed a complete curve of $M_3$ as an intersection of five hypersurfaces of the Satake compactification of $M_3$. One way to get a complete curve of $M_3$ is to find a complete one dimensional family $p : X \to B$ of plane quartics which gives a nontrivial morphism from the base space B to the moduli space $M_3$. This is because every non-hyperelliptic smooth curve of genus three can be realized as a nonsingular plane quartic and vice versa. This paper has come out from the effort to find such a complete family of plane quartics. Since nonsingular quartics form an affine space some fibers of p must be singular ones. In this paper, due to the semistable reduction theorem [M], we search singular plane quartics which can occur as singular fibers of the family above. We first list all distinct plane quartics in terms of singularities.

  • PDF

The Measurement of Dose Distribution in the Presence of Air Cavity and Underdosing Effect Result from Lack of Electronic Equilibrium (조사면내 공동의 존재에 따른 선량분포의 변화측정)

  • Jo, Jeong-Hui;Bang, Dong-Wan;Park, Jae-Il
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.8 no.1
    • /
    • pp.75-81
    • /
    • 1996
  • When high energy photon beam is incident upon an air cavity interface the effect of ionization build-up observed . This phenomenon is resulting from the surface layers of the lesions are significant deficiency of electrons reaching the layers because of the replacement, of solid scattering material by the air cavity, that is lack of electronic equilibrium. Measurement have been made in an acrylic phantom with a parallel plate chamber and high energy photon beams, CO-60, 4MV, 6MV and 10MV X-rays have been investigated. The result of our study show that a significant effect was measured and was determined to be very dependent on field size, air cavity dimension and photon energy. The reductions were much larger for 10MV beam, underdosage at the interface was 12, 12.2, 16.9 and $20.6\%$ for the CO-60, 4MV, 6MV and 10MV, respectively. It was found that this non-equilibrium effect at the interface is more severe for the higher energy beams than that of lower energy beams and the larger cavity dimensions the larger beam reductions occur. This problem is of clinical concern when lesions such as carcinoma beyond air cavities are irradiated, such as larynx, glottic and the patients with maxillectomy and ethmoidectomy and so forth.

  • PDF

Real-Time Visualization Techniques for Sensor Array Patterns Using PCA and Sammon Mapping Analysis (PCA와 Sammon Mapping 분석을 통한 센서 어레이 패턴들의 실시간 가시화 방법)

  • Byun, Hyung-Gi;Choi, Jang-Sik
    • Journal of Sensor Science and Technology
    • /
    • v.23 no.2
    • /
    • pp.99-104
    • /
    • 2014
  • Sensor arrays based on chemical sensors produce multidimensional patterns of data that may be used discriminate between different chemicals. For the human observer, visualization of multidimensional data is difficult, since the eye and brain process visual information in two or three dimensions. To devise a simple means of data inspection from the response of sensor arrays, PCA (Principal Component Analysis) or Sammon's nonlinear mapping technique can be applied. The PCA, which is a well-known statistical method and widely used in data analysis, has disadvantages including data distortion and the axes for plotting the dimensionally reduced data have no physical meaning in terms of how different one cluster is from another. In this paper, we have investigated two techniques and proposed a combination technique of PCA and nonlinear Sammom mapping for visualization of multidimensional patterns to two dimensions using data sets from odor sensing system. We conclude the combination technique has shown more advantages comparing with the PCA and Sammon nonlinear technique individually.

Three-Dimensional Effects on Added Masses of Ship-Like Forms for Higher Harmonic Modes

  • Y.K.,Chon
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.25 no.2
    • /
    • pp.19-30
    • /
    • 1988
  • Sectional added masses of an elastic beam vibrating vertically on the free surface in higher harmonic modes are evaluated. Hydrodynamic interactions between neighboring sections, which strip theory ignores, are considered for modal wave lengths of the order of magnitude of cross-sectional dimensions of the body. An approximate solution of modified Helmholtz equation which becomes a singular perturbation problem at small wave lengths is secured to get an analytic expression for added masses attending higher harmonic modes. As a bound of the present theory, the modified Helmholtz equation is solved for the long flat plate vibrating at high frequency on the water surface without any limitations on modal frequency. Finally, extensive series of numerical calculations are carried out for ship-like forms. It is found that when modal wave length is comparable to or shorter than a typical cross-sectional dimension of a body, sectional interaction effects are large which result in considerable reductions in added masses. For a fuller section, the ratio of added mass reduction is greater. In the limit of vanishing sectional area, the added masses approach to that of flat plate of equal beam. It is shown that the added mass distribution for a Legendre modal from can be determined form the present theory and that the results agree with the extensive three-dimensional determination of Vorus and Hilarides.

  • PDF

ON PAIRWISE GAUSSIAN BASES AND LLL ALGORITHM FOR THREE DIMENSIONAL LATTICES

  • Kim, Kitae;Lee, Hyang-Sook;Lim, Seongan;Park, Jeongeun;Yie, Ikkwon
    • Journal of the Korean Mathematical Society
    • /
    • v.59 no.6
    • /
    • pp.1047-1065
    • /
    • 2022
  • For two dimensional lattices, a Gaussian basis achieves all two successive minima. For dimension larger than two, constructing a pairwise Gaussian basis is useful to compute short vectors of the lattice. For three dimensional lattices, Semaev showed that one can convert a pairwise Gaussian basis to a basis achieving all three successive minima by one simple reduction. A pairwise Gaussian basis can be obtained from a given basis by executing Gauss algorithm for each pair of basis vectors repeatedly until it returns a pairwise Gaussian basis. In this article, we prove a necessary and sufficient condition for a pairwise Gaussian basis to achieve the first k successive minima for three dimensional lattices for each k ∈ {1, 2, 3} by modifying Semaev's condition. Our condition directly checks whether a pairwise Gaussian basis contains the first k shortest independent vectors for three dimensional lattices. LLL is the most basic lattice basis reduction algorithm and we study how to use LLL to compute a pairwise Gaussian basis. For δ ≥ 0.9, we prove that LLL(δ) with an additional simple reduction turns any basis for a three dimensional lattice into a pairwise SV-reduced basis. By using this, we convert an LLL reduced basis to a pairwise Gaussian basis in a few simple reductions. Our result suggests that the LLL algorithm is quite effective to compute a basis with all three successive minima for three dimensional lattices.

Power Reduction of Multi-Carrier Transmission System by Using Multi-Dimensional Constellation Mappings (효율적 다차원 성상도를 이용한 다중 반송파 전송 시스템의 전력 감소법)

  • Lee, Kyoung-Won;Kim, Jang-Hyun;Kim, Dae-Jin
    • Journal of Broadcast Engineering
    • /
    • v.14 no.6
    • /
    • pp.733-741
    • /
    • 2009
  • The design rule of digital communication systems is the reliable data transmission with high spectral efficiency and minimum allowable power. This paper suggests the method that saves the average power by implementing a multi-dimensional constellation in case of multi-carrier communication system. By using multi-dimensional constellations we can relocate constellation points in the form of a sphere. If we simply convert the two-dimensional QAM modulation into multi-dimensional QAM, constellation points of 2 N dimensional cube form are made up. Relocating outermost constellation points of 2 N dimensional cube form into low energy constellation points, the constellation of the 2 N-dimensional sphere form is made up which decreases power consumption. In this paper, the multi-dimensional constellations of 2 N-dimensional sphere form are designed from 16-QAM to 2,048-QAM, and power reductions are obtained by comparing constellations of 2-dimensional QAMs and multi-dimensional constellations of 2 N-dimensional sphere form. The result shows that the average power consumption of higher dimensional constellations increases, because the more a dimension elevates, the more the relocatable constellation points increase. But, the increment of the average power savings decreases as the a dimension elevates. The transmission of the data by using multi-dimensional constellations of the sphere form is effective to save the average power consumption with little hardware complexity.