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STABLE REDUCTIONS OF
SINGULAR PLANE QUARTICS

PYuNnGg-LYyun KANG

1. Introduction

Let M, be the moduli space of isomorphism classes of genus g smooth
curves. It is a quasi-projective variety of dimension 3g — 3, when ¢ > 2.
It is known that a complete subvariety of M, has dimension < g — 1
[D]. In general it is not known whether this bound is rigid. For example,
1t 1s not known whether M, has a complete surface in it. But one
knows that there is a complete curve through any given finite points
[H]. Recently, an explicit example of a complete curve in moduli space
is given in [G-H|. In [G-H]| they constructed a complete curve of M3
as an intersection of five hypersurfaces of the Satake compactification
of Mj3. One way to get a complete curve of M3 is to find a complete
one dimensional family p : X — B of plane quartics which gives a
nontrivial morphism from the base space B to the moduli space M3.
This 1s because every non-hyperelliptic smooth curve of genus three can
be realized as a nonsingular plane quartic and vice versa. This paper has
come out from the effort to find such a complete family of plane quartics.
Since nonsingular quartics form an affine space some fibers of p must be
singular ones. In this paper, due to the semistable reduction theorem
[M], we search singular plane quartics which can occur as singular fibers
of the family above. We first list all distinct plane quartics in terms of
singularities.

PROPOSITION 1. There are 55 equisingular strata in the projective
space P! of all plane quartics. The twenty irreducible quartics besides
nonsingular ones are ones with one node (1)*; with two nodes (2); with
three nodes (3); with one cusp (2); with one cusp and one node (3); with
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one cusp and two nodes (4); with a tacnode (3); with a tacnode and a
node (4); with a triple point (4); with two cusps (4); with two cusps and
a node (5); with a double cusp (4); with a double cusp and a node (5);
with a tacnode and a cusp (5); with a osnode (5); with a cusp with a
smooth branch (5); with three cusps (6); with a cusp and a double cusp
(6); with a triple cusp (6); with an ordinary cusp of multiplicity three
(6). The thirty four reducible quartics are a cubic and a line (11)**; a
cubic and a tangent line (10); a cubic and a flex line (9); a nodal cubic
and a line (10); a nodal cubic and a tangent line (9); a nodal cubic and
a flex line (8); a nodal cubic and a line through a node (9); a nodal
cubic and a tangent line at a node (8); a cuspidal cubic and a line (9);
a cuspidal cubic and a tangent line (8); a cuspidal cubic and a fiex line
(7); a cuspidal cubic and a line through a cusp (8); a cuspidal cubic
and a tangent line at a cusp (7); two conics (10); two conics meeting
tangentially at one point (9); two conics meeting tangentially at two
points (8); two conics with an intersection multiplicity 3 at one point
(7); two conics meeting only one point (6); double conics (5); a conic
and two lines (9); a conic, a line and a tangent line (8); a conic and two
lines which intersect on the conic (8); a conic and two tangent lines (7);
a conic, a line and a tangent line through an intersection point (7); a
conic and a double line (7); a conic and a double tangent line (6); four
distinct lines (8); a line and three concurrent lines (7); four concurrent
lines (6); two lines and a double line (6); three concurrent lines one of
which is a double line (5); two double lines (4); a triple line and a line
(4); a quadruple line (2).

In Proposition 1, the number with * is the codimension in P'* and
the number with ** is the dimension of each equisingular stratum.

A k-tuple cusp of a plane curve is a double point with a unique tangent
line which becomes (k — 1)-tuple cusp after a blowup. An ordinary cusp
of multiplicity three is a triple point with a unique tangent line which
becomes a smooth point by taking a blow up once, i.e., a point whose

local equation is y* = z1.

Proof. For irreducible quartics, it is classical, or see Namba [N]. For
reducible ones, combine all possible plane curves of degree < 4 with
Bezout theorem.
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2. Semistable reduction, preliminary

A connected and reduced curve with at worst nodes as singularities is
called semistable (stable, resp.), if it has no smooth rational components
meeting the rest of the curve at one point (one or two points, resp.).
From now on a curve is connected. In this section we apply the semistable
reduction theorem ([M], [B]) to singular curves with a cusp, a tacnode or
a triple point. We start with the following known facts for the completion
of this paper.

LEMMA 2. Let X be a surface given by z9"y" = 29 in C®. Assume q
is a prime number. If r = ¢s, then the normalization of X is q disjoint
union of surfaces of equation x™y® = z. If (r,q) = 1, it is an irreducible
surface given by z™y" = z.

Proof. If r = gs, then x9"y9° — 29 = [I¢(z"y* — £2) where £ is all dis-
tinct ¢ — th root of unity. As a normalization, we take all ¢ components.
Ifr =1, put y = (2/2")? = w?. We now look at the intersection of two
threefolds 29"y — 2?9 = 0 and y = w? in z,y, z,w space. Since y = w? is
nonsingular we substitute it to z9y—2z7 = 0: z9"wI—27 = Hs(x"w—fz).
Now each component z"w = £z in z, z, w space maps generically one to
one and onto the surface 29"y = 27 and y = w? by mapping (z,z, w)
to (z,w?, z"w,w). So, we may take one of them as a normalization. If
(r,g) =1landr > 1, put y" = (2/2")7 = w?. Since y" = w? is singular,
we map (a, b, c) space to (z,y, z,w) space sending (a, b,¢) — (a, b?, ¢, b")
the image of which is the threefold y” = w? in (z,y, z, w) space. Pulling
back X, we get a surface of equation a9b9" — ¥ = He(a"br —€e)=0.
Again each component is smooth and maps generically one to one and
onto X, so we take one of them as a normalization.

PROPOSITION 3. Let X be a smooth surface, /A be a unit disk of C3
and p: X — A a flat family of smooth curves except p~'(0) = C.
Suppose that

(a) C is a curve with an ordinary cusp as its only singularity,

(b) C is a curve with a tacnode as its only singular point,
(c) C is a curve with a triple point as only singular point.

Then, by applying the semistable reduction theorem, we can replace the
fiber C over t = 0 with the stable curve of the following, respectively.
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Here C is the normalization of C and C is an elliptic curve. In (a)
and (c), the j -invariant of C) is always zero.

Y
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for some discussions on stable reduction process.

Proof. The above facts are not new. But the process of semistable
reduction is very essential to guess the results of the next section, so we
give the proofs for (b) and (c) here. For (a), the reader can see example
1.6 in [B].

(b) Since X is nonsingular we first resolve the singularity of C. Taking
the blow-ups of X at the singularity of C and its infinitely near point, we
get, over t = 0, the following figures (Figure 2). Each vertical line is the
exceptional divisor of each step and the number next to each component
the multiplicity, and the curve C is the (partial) normalization of C
throughout this paper.

2 %
— 2
¢ ( -
C
original center fiber first blowup second blowup
figure?

Next process is to get rid of the multiple components of the fiber by
base changes. The first change of order 2 gives us three singular points
of a total surface of types z*y? = t?, z'y = t? and z*y = t2, respectively.
By Lemma 2 the normalization looks like Figure 3, where the vertical
component is two to one cover over P! branched at two points; Riemann-
Hurwitz implies that its genus is zero. One more base change of order 2
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1s needed; again by Lemma 2, we have Figure 4. The vertical line this
time is two to one cover branched at four points, therefore the genus is
one by Riemann-Hurwitz. Two upper horizontal components in Figure 4
are rational and it is easy to check that the self-intersection number of
each of them is —1. Contracting them, we get (b).

We give the proof of (c) rather quickly. To resolve a triple point of
C, we blow up X at a triple point and get, over ¢ = 0, Figure 5. Taking
the base change of order three and normalizing at singular points, we
get Figure 6. Then the vertical component is three to one cover over
P! totally branched at three points; therefore the genus is one and its
J-invariant is zero [Ha].

3 —
S —_ c s

-

figure3 figure4 figureb figure6

3. Stable reduction of singular plane quartics

In this section we work on the following setting. Let P! be the
projective space parameterizing all plane quartics, C' a singular quartic
and E an equisingular stratum containing C. Let A be an open unit disk
of C. We embed A locally in P!* in such a way that A —0 is contained in
the locus of smooth curves and 0 maps to C. Pulling back the universal
family over P'* to a family over A we get a family p: X — Aof
smooth plane quartics degenerating to C. We call P the singular point
of C' we examine. Note that the total surface X is either nonsingular or
singular at P according how we embed A in P!*. We also take a family
whose generic fibers are not projectively equivalent to each other. For
a chosen family as above we make X nonsingular and do semistable (or
stable) reduction as in Proposition 3 to get a stable curve. We call it
a stable model of C. From it we can determine the map A into Mj,
the Deligne-Mumford compactification of Mj, i.e., the moduli space of
all genus three stable curves. We note that the stable reductions of all
plane quartics have been done for generic X. But it is very much out
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of hands to describe the rational map from P4 to M3 because a stable
model can be anything for a choice of a family p: X — A

We now find singular plane quartics which have smooth stable models.
As one can see from the proof of Proposition 3, the stable model of
C contains, in the case that X is nonsingular, as its components the
(partial) normalization of all components of C if it is not contracted
and components produced by each singular point other than nodes of C.
From proposition 3 one can expect that the latter have genus bigger than
zero since a cusp, a tacnode, or a triple point is the simplest singular
point of the similar type. We also note that the intersection number
of two components is determined by the type of the tangent line of C
at P. One may consider that therefore, for irreducible quartic to have
a smooth stable model, it should be rational with only one singular
point with unitangent line. From Proposition 1, there remain only two
candidates among irreducible ones: a plane quartic with a triple cusp,
and one with an ordinary cusp of multiplicity three.

THEOREM 1. The above two candidates have smooth stable models.

Proof. It is enough to give a family p: X — A, of smooth quartics
degenerating to each candidate, the stable reduction of which replaces
C with a smooth curve of genus three. For a plane quartic with a triple
cusp we take C as y?z? + 2z%yz + 2* + zy® = 0. It has a triple cusp
at (0 : 0 : 1) with the tangent line y = 0. Let us take X as y?z% +
22%yz + 2 +zy® +t2* =0 or y?2% + 22%yz + 2t + 2yt +t(z* + rz3) =0
in P2 x A,. Both of X are nonsingular. The first choice is natural for
nonsingular X when X, is a nonsingular quartic for small ¢ # 0. The
reason that the author put the second choice is that it is one way to
make X; projectively independent for nonzero t from the first choice if
the generic fibers of the first choice are not projectively independent.
For possible singular X and the corresponding stable reduction, see [K].
Since X is smooth, the semistable reduction process is same as that in
Proposition 3. Just chasing the central fibers, we have the following
figures.
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The Figure (a) is the original central fiber with P a triple cusp: (b)
is the blow-up of X at P with P; a double cusp: (c) is the blowup of
the total surface of (b) at P; with P, an ordinary cusp of Cy: (d) is
the blowup of the total surface of (¢) at P,: (e) is the blowup of the
total surface of (d) at Ps: (f) is the blowup of the total surface of (e)
at Py: (g) is the base change of order seven of (f) with the vertical
component rational: (h) is the base change of order two of (g). The
vertical component is a smooth curve of genus three since it is the two
to one cover over P! totally branched at eight points. Contracting the
first seven horizontal components and others after some base changes
we get a smooth curve of genus three. At each step the base change is
always followed by the normalization in the proof of Theorems 1 and 2.

For a plane quartic C with an ordinary cusp of multiplicity three, there
are two up to projective equivalence [N] : y3z+z* = 0 and y?2+y*4+2¢ =
0. Here we take C as y®z +2* =0 and X as y®z + 2* + t(2* + 223) = 0.
For other possible C' and X see [K]. Doing exactly the same process as
before, we get a smooth curve of genus three as a stable model. In this
case 1t is trigonal.

REMARK. The above theorem does not claim that all possible stable
models of two curves in theorem are smooth. In fact, the above cases
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are rather rare. If we take X as y? 4+ 222y 4 z* 4 zy® + ty = 0 when
C is a quartic with a triple cusp, we get, as a stable model, a reducible
curve consisting of a genus two curve and an elliptic curve meeting at
one point. For a quartic with an ordinary cusp of multiplicity three, the
similar example y® + z* + ty = 0 gives a smooth one too. But if we take
X as y® + 2 +t?z 4 tz? = 0, we get a reducible curve consisting of a
genus two curve and an elliptic curve meeting at one point.

We now seek all reducible (including reduced ones) plane quartics
C which can occur as fibers of the complete one dimensional family
of plane quartics mentioned in the introduction. As mentioned before
all components of the candidates are rational with only one singular
point P other than nodes to produce a genus three smooth component.
We also know that each single component of C through P should have
unitangent line, otherwise it would produce a node to a stable model.
Such candidates are

(i) a cuspidal cubic and a tangent line at the cusp

(i1) two conics which meet only one point

(iii) double conic

(iv) a conic and a double tangent line

(v) four concurrent lines

(vi) three concurrent lines one of which is a double line
(vil) two double lines
(viil) a triple line and a line

(ix) a quadruple line.

THEOREM 2. Among the above 9 candidates, each curve of type (i),
(i1), (iii), (v), (viii) and (ix) does admit a smooth stable model in M.

Proof. As in Theorem 1, it is enough to give a right example X =
{X,}tea which satisfies that X, is a nonsingular quartic and projectively
independent for nonzero ¢ for each curve C. Note that there is only one
up to projective equivalence in each family.

When C is a cuspidal cubic and a tangent line, take y(y?z — z3) =0
and y(y?z — 23) +t(z* + z23) = 0 as equations of C' and X respectively.
Since X is smooth surface for t € A, the semistable reduction process
is same as that in Proposition 3. The following are the changes of the
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Then take order 9 base change and get a genus three curve at the ver-
tical component. Blowing down four horizontal components and taking
order 5 base change to remove remaining components, we are done. The
result is a genus three smooth curve (which is trigonal).

If C is two conics meeting only one point, we take C and X as (yz +
2?)yz+z*+y*) =0and (yz +2%)(yz + 22 +y?) —t2* =0 respectively.
The total surface X is smooth, So we can do it as before.

We here note some remarks about the choice of the equation X. The
reason that we take X in (i) as y(y?z — 3) + t(2* + z2%) = 0 instead of
y(y?z—23)+1(2*) = 0 is that the latter choice is projectively equivalent
for two different nonzero ¢t and t'. If the chosen X in (ii) were projectively
equivalent for two different nonzero ¢ and #', one can add terms as in (i)
to make general fibers projectively inequivalent.

For double conics, see [H]. Or, as we did, take C and X as (z?+yz)? =
0 and (2® +yz)? 4+ t(y* + 2*) = 0. This time X has eight singular points
on C away P of type #* = i for an adequate coordinate #, § and .
Desingularize X and get, over ¢t = 0, a double conic with 8 exceptional
lines (Figure 9). By taking the base change of order 2, we have a genus
three curve with eight (-1) rational components. This time the stable
model is a hyperelliptic genus three smooth curve.

rg &
— X 3 2
< 3 Z
/_)i 2 3 2
/_)il 3 2

figure9 figure 10 figurell
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Take C as 23y — zy® = 0 and X as 2%y — zy® +#(2* + 72%) =0 for a
curve in (v). Since X is smooth, taking the blowup of X at P and the
base changes of order two twice (or order four once), we get a smooth
curve of genus three after blowing down four (-1) rational components.

For a triple line and a line we take C' as z3y = 0 and X as 23y +
pt(z* +y* + 2*) = 0,p = 1/2. Here p is taken to make X, nonsingular
for t € A. The total surface X has four singular points (z = 0 and
y! + 2% = 0) over t = 0 away from P of type 73 + #j = 0 for adequate
coordinates Z, 7, and ¢. Smoothing X at the above four singular points,
we replace the central fiber by Figure 10. The base change of order three
and then order two give us a smooth components of genus three with
nine (-1) rational components. In particular it is trigonal.

For a quadruple line z* = 0, we take X as z* +t(z* + y* +2*) = 0.
There are four singular points of X of type * +tj =0whent =0,z =0
and y* + z! = 0. The normalization of X at these four singular point
replaces C' with Figure 11. Two base changes of order two and blowing
down (-1) rational components, we get a smooth curve of genus three.

REMARK. We suspect that the remaining three components (iv), (vi)
and (vii) never admit a smooth stable model.
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