• Title/Summary/Keyword: Dilute sulfuric acid

Search Result 51, Processing Time 0.038 seconds

Combined Aqueous Ammonia-Dilute Sulfuric Acid Pretreatment of Miscanthus for Bioethanol Production (바이오에탄올 제조를 위한 억새의 암모니아-희황산 복합 전처리)

  • Bark, Surn-Teh;Koo, Bon-Cheol;Choi, Yong-Hwan;Moon, Youn-Ho;Ahn, Seung-Hyun;Cha, Young-Lok;Kim, Jung Kon;An, Gi Hong;Suh, Sae-Jung;Park, Don-Hee
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.179.1-179.1
    • /
    • 2011
  • Pretreatment of cellulosic biomass is necessary before enzymatic saccharification and fermentation. The objective of this study was to evaluate the effect of combined aqueous ammonia-dilute sulfuric acid treatment on cellulosic biomass. Miscanthus was pretreated using aqueous ammonia and dilute sulfuric acid solution under high temperature and pressure conditions to be converted into bioethanol. Aqueous ammonia treatment was performed with 15 %(w/w) ammonia solution at $150^{\circ}C$ of reaction temperature and 20 minutes of reaction time. And then, dilute sulfuric acid treatment was performed with 1.0 %(w/w) sulfuric acid solution at $150^{\circ}C$ of reaction temperature and 10 minutes of reaction time. The compositional variations of this combined aqueous ammonia-dilute sulfuric acid treatment resulted in 68.0 % of cellulose recovery and 95.7 % of hemicellulose, 81.3 % of lignin, 89.1 % of ash removal respectively. The enzymatic digestibility of 90.5 % was recorded in the combined pretreated Miscanthus sample and it was 14.7 times higher than the untreated sample. The ethanol yield in the Simultaneous Saccharification and Fermentation was 90.4 % of maximum theoretical yield based on cellulose content of the combined pretreated sample and it was about 98 % compared to the ${\alpha}$-cellulose ethanol yield.

  • PDF

Dilute Acid Pretreatment of Woody Hemicellulose Using a Percolation Process (Percolation 공정에 의한 목질계 헤미셀룰로오스의 묽은산 전처리)

  • 염동문;김성배;박순철
    • KSBB Journal
    • /
    • v.13 no.3
    • /
    • pp.312-319
    • /
    • 1998
  • The dilute-acid pretreatment/hydrolysis of hemicellulose in oak wood using a percolation reactor was investigated. The experimental conditions ranged 160∼180$^{\circ}C$ and 0.05∼0.2 wt.% sulfuric acid. XMG(xylan+mannan+galactan) recovery was higher when sulfuric acid was used as leaching solvent than water. Also it was important for high XMG recovery to keep leaching temperature higher after reaction. XMG recovery was decreased as the size of wood chips was increased. At an optimum condition (reaction condition= 170$^{\circ}C$, 0.1% sulfuric acid, 1ml/min, 10min, leaching condition=0.1% sulfuric acid, 2mL/min, 20 min), the product yield and the sugar concentration were about 92% and 2.7%, respectively.

  • PDF

Pretreatment of Wasted Corn Stalk from Gangwon Province for Bioethanol Production (강원지역 폐옥수수대로부터 바이오에탄올 생산을 위한 전처리 방법 개발)

  • Choi, Jae Min;Kang, Se Young;Yeom, Sung Ho
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.19 no.3
    • /
    • pp.79-89
    • /
    • 2011
  • The wasted corn stalk from Gangwon province is composed of 44.6 % glucan, 19.0 % xylan, 23.8 % lignin, 4.5 % ash and 8.1 % others. Statistical analysis, full factorial design, revealed that temperature was the most influential factor in the dilute sulfuric acid pretreatment and that the influence of temperature on xylose yield was 3.5 and 3.2 times higher than those of treatment time and acid concentration, respectively. Temperature was also the most influential factor for glucose yield in the pretreatment but it was less than 5 % throughout the pretreatment. Although minor sugar yield was observed when microwave or ultrasonication was solely introduced as a pretreatment method, the complex method incorporating microwave or ultrasonication into dilute sulfuric acid pretreatment enhanced sugar yield significantly. In particular, xylose yield was doubled when microwave and dilute sulfuric acid treatment was sequentially applied. The optimization of pretreatment and enzymatic hydrolysis as well as the investigation on the complex pretreatment in detail are left for further study.

Dilute-acid pretreatment of rapeseed straw of using the combined severity (combined severity를 이용한 유체대의 묽은 산 전처리)

  • Jeong, Tae-Su;Oh, Kyeong-Keun
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.06a
    • /
    • pp.244.2-244.2
    • /
    • 2010
  • Biological conversion of biomass into fuels and chemicals requires hydrolysis of the polysaccharide into monomeric sugars. In this study, dilute sulfuric acid used as a catalyst for the pretreatment of rapeseed straw. Hydrolysis can be performed enzymatically, and with dilute or concentrate mineral acids. Dilute-acid hydrolysis of rapeseed straw was optimized through the utilization of combined severity. Evaluation criteria for optimization of the pretreatment conditions were based on high xylose recovery and low inhibitor contents in the hydrolyzates. In addition, this paper reports the compositional analysis of hydrolyzate liquors and solid residues, xylose and glucose mass balance closures, and digestibility results of the acid pretreated rapeseed straw.

  • PDF

Changes of Furfural and Levulinic Acid Yield from Small-diameter Quercus mongolica Depending on Dilute Acid Pretreatment Conditions (약산 전처리 조건에 따른 소경 신갈나무 유래 푸르푸랄 및 레불린산의 함량 변화)

  • Jang, Soo-Kyeong;Jeong, Han-Seob;Hong, Chang-Young;Kim, Ho-Yong;Ryu, Ga-Hee;Yeo, Hwanmyeong;Choi, Joon Won;Choi, In-Gyu
    • Journal of the Korean Wood Science and Technology
    • /
    • v.43 no.6
    • /
    • pp.838-850
    • /
    • 2015
  • In this study, dilute acid pretreatment was operated using small-diameter Quercus mongolica for evaluating the yield change of furfural and levulinic acid depending on pretreatment factors. The dilute acid pretreatment was conducted depending on reaction temperature ($140-180^{\circ}C$), reaction time (10-30 min), and sulfuric acid concentration (0-2%, w/w). Then, glucose, XMG (xylose + mannose + galactose), furfural, and levulinic acid contents in the liquid hydrolyzate were measured and analyzed after pretreatment. Glucose content increased to 16.02% as reaction temperature, reaction time, and sulfuric acid concentration increased, but it decreased at the sulfuric acid concentration of 2% (reaction temperature: > $170^{\circ}C$, reaction time: > 20 min). On the other hand, reaction temperature had a strong influenced on XMG content, and XMG content decreased to 1.63% through increasing of reaction temperature and sulfuric acid concentration, but XMG content was less affected by changes of reaction time. Furfural content increased with the increase of reaction temperature, reaction time, and sulfuric acid concentration, and maximum furfural content was 7.61% (reaction temperature: $180^{\circ}C$, reaction time: 20 min, sulfuric acid concentration: 1%) based on a weight of raw material, while furfural content was dropped in more severe condition than in maximum furfural content condition. Levulinic acid content also increased with higher reaction temperature, reaction time, and sulfuric acid concentration. Especially, the sharp increase of levulinic acid content was observed above $170^{\circ}C$, and maximum levulinic acid content was 10.98% (reaction temperature: $180^{\circ}C$, reaction time: 30 min, sulfuric acid concentration: 2%). However, less than 1% of furfural and levulinic acid content was obtained in non-acidic catalyst condition that in whole conditions of reaction temperature and reaction time.

Studies on the Coated Broke Recycling in the Papermaking(II)-Effect of Sulfuric acid Treatment on Coated Broke Recycling - (도공파지의 재생에 관한 연구(제 2보)-황산처리가 도공파지 재생공정에 미치는 영향)

  • 이용규;김창근
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.31 no.4
    • /
    • pp.23-29
    • /
    • 1999
  • The effect of dilute sulfuric acid treatment was examined to improve recyclability of coated brokes. Turbidity , electric conductivity , and cationic demand of the white water from coated broke prepared from an alkaline base paper was determined. Sulfuric acid treatment was found to be effective in dissolving undisintegrated substances such as binders, pigments, and fibers. The properties of papers prepared by adding the broke to pulp stock up to 30% dry weight were examined . With the increase of broke addition, retention, sizing degree and smoothness were improved ; on the other hand, formation uniformness, air permeability and internal bonding strength were decreased. The extent of improvement by broke addition was greater for the surfuric acid-treated broke than the control broke. It was concluded that the use of coated broke should be limited within 10-15% weight of the product for either type of broke.

  • PDF

Fast and Soft Functionalization of Carbon Nanotube with -SO3H, -COOH, -OH Groups for Catalytic Hydrolysis of Cellulose to Glucose

  • Lusha, Qin;Lee, Sungho;Li, Oi Lun
    • Journal of the Korean institute of surface engineering
    • /
    • v.53 no.3
    • /
    • pp.87-94
    • /
    • 2020
  • Herein, sulfonated carbon nanotubes (CNT) have been prepared in dilute sulfuric acid (H2SO4) via a novel sulfonation approach based on gas-liquid interfacial plasma (GLIP) at room temperature. The sulfonic acid groups and total acid groups densities of CNT after GLIP treatment in 2 M H2SO4 for 45 min can reach to 0.53 mmol/g and 3.64 mmol/g, which is higher than that of sulfonated CNT prepared under 0.5 M / 1 M H2SO4. The plasma sulfonated CNT has been applied as catalysts for the conversion of microcrystalline cellulose to glucose. The effect of hydrolysis temperature and hydrolysis time on the conversion rate and product distribution have been discussed. It demonstrates that the total conversion rate of cellulose increasing with hydrolysis temperature and hydrolysis time. Furthermore, the GLIP sulfonated CNT prepared in 2 M H2SO4 for 45 min has shown high catalytic stability of 85.73 % after three cycle use.

Optimization the Xylose Fractionation Conditions of Pepper Stem with Dilute Sulfuric Acid (농업부산물 고추대 (Pepper Stem)을 이용한 묽은 황산 자일로즈 분별공정의 최적화)

  • Won, Kyung-Yoen;Oh, Kyeong-Keun
    • KSBB Journal
    • /
    • v.24 no.4
    • /
    • pp.361-366
    • /
    • 2009
  • Response surface methodology (RSM) was used for optimization the fraction conditions of xylose from pepper stem with dilute sulfuric acid. The independent variables were acid concentration in the range of 1.134 to 2.866%, reaction temperatures in the range of 142.68 to $177.32^{\circ}C$, and hydrolysis time in the range of 6.34 to 23.66 min. were studied. The dependent variables were xylose yield from pepper stem, and the production of by-products, for example, furfural, acetic aicd, HMF etc. Experimental results had a good match with statistical result. The maximum xylose yield obtained in this experiment was 71% concentration.

Production of Total Reducing Sugar and Levulinic Acid from Brown Macro-algae Sargassum fulvellum (거대 갈조류 모자반으로부터 환원당과 레불린산의 생산)

  • Jeong, Gwi-Taek
    • Microbiology and Biotechnology Letters
    • /
    • v.42 no.2
    • /
    • pp.177-183
    • /
    • 2014
  • Recently, many biofuels and chemicals converted from renewable resources have been introduced into chemical industries. Sargassum fulvellum is a brown macro-algae, which is found on the seashores of Korea and Japan. In this work, the production of total reducing sugar and levulinic acid from S. fulvellum, using dilute-acid catalyzed hydrothermal hydrolysis and statistical methodology, was investigated. As a result, 15.28 g/l total reducing sugar was obtained under the optimized conditions of $160.1^{\circ}C$, 1.0% sulfuric acid, in 20.2 min. Furthermore, 2.65 g/l levulinic acid was obtained at $189.5^{\circ}C$, 2.93% sulfuric acid, in 48.8 min.