농업부산물 고추대 (Pepper Stem)을 이용한 묽은 황산 자일로즈 분별공정의 최적화

Optimization the Xylose Fractionation Conditions of Pepper Stem with Dilute Sulfuric Acid

  • 원경연 (단국대학교 공학대학 응용화학공학과) ;
  • 오경근 (단국대학교 공학대학 응용화학공학과)
  • Won, Kyung-Yoen (Department of Applied Chemical Engineering, Dankook University) ;
  • Oh, Kyeong-Keun (Department of Applied Chemical Engineering, Dankook University)
  • 발행 : 2009.08.29

초록

본 연구에서는 반응표면분석법 (RSM)을 따른 고추 대의 묽은 황산을 이용한 자일로즈 분별 공정을 통해 고추대 시료로부터 최적의 자일로즈 수율을 얻을 수 있는 반응조건을 예측할 수 있었다. 실제 실험 결과 최적 반응은 온도 $147^{\circ}C$, 산 농도 2.8% $H_2SO_4$, 반응시간 21 min. 임을 알 수 있었고 최적 조건에서의 실험결과는 예측 값 78% 보다 약 7% 낮은 71% 자일로즈 수율을 얻을 수 있었다. SEM과 XRD분석을 통해 전처리 전후의 시료의 이미지 분석을 하여 산 전처리 공정을 통해 섬유소 기질 외 다른 성분인 반 섬유소가 분해 되어 추출액상으로 자일로즈로 용해 되었음을 가시적으로 확인 할 수 있었고 전처리 된 고추대의 결정화 도가 전처리 전보다 증가했음을 확인 할 수 있었다. 이로써 비결정성 물질인 반섬유소와 기타 성분들이 묽은 황산을 이용한 자일로즈 분별공정에 의해 분리되었음을 확인하였다.

Response surface methodology (RSM) was used for optimization the fraction conditions of xylose from pepper stem with dilute sulfuric acid. The independent variables were acid concentration in the range of 1.134 to 2.866%, reaction temperatures in the range of 142.68 to $177.32^{\circ}C$, and hydrolysis time in the range of 6.34 to 23.66 min. were studied. The dependent variables were xylose yield from pepper stem, and the production of by-products, for example, furfural, acetic aicd, HMF etc. Experimental results had a good match with statistical result. The maximum xylose yield obtained in this experiment was 71% concentration.

키워드

참고문헌

  1. Eiji K., H. Sato, S. Takahashi, H. Noda, C. Fukuhara, and T. Okamura (2008), Liquefaction kinetics of cellulose treated by hot compressed water under variable temperature conditions, J. Mater Sci. 43, 2179-2188 https://doi.org/10.1007/s10853-007-2043-6
  2. Petersson, A., T. H. Mεtte , H. N. Henrik, and T. Anne-Belinda (2007), Potential bioethanol and biogas production using lignocellulosic biomass from winter rye, oilseed rape and faba bean, Biomass and Bioenergy 31, 812-819 https://doi.org/10.1016/j.biombioe.2007.06.001
  3. Juan, I. M., V. A. Alvarez, V. P. Cyras, and P. Analia (2008), Extraction of cellulose and preparation of nanocellulose from sisal fibers, Cellulose 15, 149-159 https://doi.org/10.1007/s10570-007-9145-9
  4. Wada M, G. J. Kwon, and Y. Nishiyama (2008), Structure and thermal behavior of a cellulose I-ethylεnediamine complex, Biomacromolecules. 9, 2898-2904 https://doi.org/10.1021/bm8006709
  5. Baek, S. W. (2004), Production of sugar by dilute acid hydrolysis of biomass : SEDAP treated oak wood and sugarcane bagasse, M. S. Thesis , Dept. of Industrial chemistry, Dankook university, Korea
  6. Karaosmanoglu, F., E. Tetik, and E. Gollu (1999), Biofuel production using slow pyrolysis of the straw and stalk of the rapeseed plant, Fuel Processing Technology 59, 1-12 https://doi.org/10.1016/S0378-3820(99)00004-1
  7. Wyman, C. E. (1996), Ethanol production from lignocellulosic biomass: Overview. In Handbook on Bioethanol, Production and Utilization (Wyman, C. E., ed.), 1-18, Taylor & Francis
  8. Keikhosro, K., S. Kheradmandinia, and M J. Taheerzadeh (2006), Conversion of rice straw to sugars by diluteacid hydrolysis, Biomass and Bioenergy 30, 247-253 https://doi.org/10.1016/j.biombioe.2005.11.015
  9. Han, K. H., J. H. Ko, and S. H. Yang (2007), Optimizing lignocellulosic feedstock for improved biofuel productivity and processing, Biofoels Bioproducts and Biorefining 1, 135-146 https://doi.org/10.1002/bbb.14
  10. Oh, K K, S. I. HOllg, and Y. Y. Lee (1998),OptirnizatiOll of annnonia recyded percolation process for lignocellulose biomass pretreatrnent, J. Kor. I Chem. Eng. 36, 784-791
  11. Baek, S. W., J. S. Kim, Y. K. Park, Y. S. Kim, and K. K. Oh (2008), The effect of sugar decomposed on the ethanol fermentation and decomposition reactions of sugars, Biotechnol. Bioprocess Eng. 13, 332-341 https://doi.org/10.1007/s12257-007-0161-2
  12. Park, K. H., Y. G. Park, J. Y. Yoon, and J. K. Jang (2007), A prospect agriculture 2008, 807-820, Korea Rural Economic Institute
  13. Hong, J. G., Y. H. Park, and J. S. Seo (2002), In compliance with the bioconversion of recyde, concepts the efficient use technical development of the agriculture waste, Rural Development Agriculture 288-290
  14. A. Sluiter., B. Hames, R. Ruiz, C. Scarlata, J. Sluiter, D. Templeton, and D. Crocker, (2008), Determination of sugars, byproduct’s and degradation products in liquid fraction process samples, NREUTP-510-42623
  15. A. Sluiter., B. Hames, R. Ruiz, C. Scarlata, J. Sluiter, D. Templeton, and D. Crocker, (2008), Determination of structural carbohydrates and lignin in biomass, NREL/TP-510-42618
  16. Canettieri, E. V., Mo. G. J. R., J. A. Carvalho Jr, and J. B. A. Silva (2007), Optimazation of acid hydrolysis from the hernicellulosic fraction of Eucalyptus grandis resid).le using response surface methodology, Bioresource Technology. 98, 422-428 https://doi.org/10.1016/j.biortech.2005.12.012
  17. Jensen, J., J. Morinelly, A. Aglan, A. Mix, and D. Shonnard (2008), Kinetic characterization of biomass dillute sulfuric acid hydrolysis: mixtures of hardoods, softwood, and switchgrass, AIChE Journal. 54, 6 https://doi.org/10.1002/aic.11467
  18. Keikhosro K , S. Kheradmandinia, and M. J. Taherzadeh (2006), Conversion of rice straw to sugars by diluteacid hydrolysis, Biomass and Bioenergy, 30, 247-253 https://doi.org/10.1016/j.biombioe.2005.11.015
  19. Xing, Q., Y. Y. Lee, and R. W. Torget (2004), Kinetic of glucose decomposition during dilute-acid hydrolysis of lignocellulosic biomass, App. Biochem. Biotech.113-116