• Title/Summary/Keyword: Dilated Convolution

Search Result 27, Processing Time 0.02 seconds

Traffic Flow Prediction Model Based on Spatio-Temporal Dilated Graph Convolution

  • Sun, Xiufang;Li, Jianbo;Lv, Zhiqiang;Dong, Chuanhao
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.14 no.9
    • /
    • pp.3598-3614
    • /
    • 2020
  • With the increase of motor vehicles and tourism demand, some traffic problems gradually appear, such as traffic congestion, safety accidents and insufficient allocation of traffic resources. Facing these challenges, a model of Spatio-Temporal Dilated Convolutional Network (STDGCN) is proposed for assistance of extracting highly nonlinear and complex characteristics to accurately predict the future traffic flow. In particular, we model the traffic as undirected graphs, on which graph convolutions are built to extract spatial feature informations. Furthermore, a dilated convolution is deployed into graph convolution for capturing multi-scale contextual messages. The proposed STDGCN integrates the dilated convolution into the graph convolution, which realizes the extraction of the spatial and temporal characteristics of traffic flow data, as well as features of road occupancy. To observe the performance of the proposed model, we compare with it with four rivals. We also employ four indicators for evaluation. The experimental results show STDGCN's effectiveness. The prediction accuracy is improved by 17% in comparison with the traditional prediction methods on various real-world traffic datasets.

Pornographic Content Detection Scheme Using Bi-directional Relationships in Audio Signals (음향 신호의 양방향적 연관성을 고려한 유해 콘텐츠 검출 기법)

  • Song, KwangHo;Kim, Yoo-Sung
    • The Journal of the Korea Contents Association
    • /
    • v.20 no.5
    • /
    • pp.1-10
    • /
    • 2020
  • In this paper, we propose a new pornographic content detection scheme using bi-directional relationships between neighboring auditory signals in order to accurately detect sound-centered obscene contents that are rapidly spreading via the Internet. To capture the bi-directional relationships between neighboring signals, we design a multilayered bi-directional dilated-causal convolution network by stacking several dilated-causal convolution blocks each of which performs bi-directional dilated-causal convolution operations. To verify the performance of the proposed scheme, we compare its accuracy to those of the previous two schemes each of which uses simple auditory feature vectors with a support vector machine and uses only the forward relationships in audio signals by a previous stack of dilated-causal convolution layers. As the results, the proposed scheme produces an accuracy of up to 84.38% that is superior performance up to 25.80% than other two comparison schemes.

CERTAIN RADIALLY DILATED CONVOLUTION AND ITS APPLICATION

  • Rhee, Jung-Soo
    • Honam Mathematical Journal
    • /
    • v.32 no.1
    • /
    • pp.101-112
    • /
    • 2010
  • Using some interesting convolution, we find kernels recovering the given function f. By a slight change of this convolution, we obtain an identity filter related to the Fourier series in the discrete time domain. We also introduce some techniques to decompose an impulse into several dilated pieces in the discrete domain. The detail examples deal with specific constructions of those decompositions. Also we obtain localized moving averages from a decomposition of an impulse to make hybrid Bollinger bands, that might give various strategies for stock traders.

A Pansharpening Algorithm of KOMPSAT-3A Satellite Imagery by Using Dilated Residual Convolutional Neural Network (팽창된 잔차 합성곱신경망을 이용한 KOMPSAT-3A 위성영상의 융합 기법)

  • Choi, Hoseong;Seo, Doochun;Choi, Jaewan
    • Korean Journal of Remote Sensing
    • /
    • v.36 no.5_2
    • /
    • pp.961-973
    • /
    • 2020
  • In this manuscript, a new pansharpening model based on Convolutional Neural Network (CNN) was developed. Dilated convolution, which is one of the representative convolution technologies in CNN, was applied to the model by making it deep and complex to improve the performance of the deep learning architecture. Based on the dilated convolution, the residual network is used to enhance the efficiency of training process. In addition, we consider the spatial correlation coefficient in the loss function with traditional L1 norm. We experimented with Dilated Residual Networks (DRNet), which is applied to the structure using only a panchromatic (PAN) image and using both a PAN and multispectral (MS) image. In the experiments using KOMPSAT-3A, DRNet using both a PAN and MS image tended to overfit the spectral characteristics, and DRNet using only a PAN image showed a spatial resolution improvement over existing CNN-based models.

Multi-band multi-scale DenseNet with dilated convolution for background music separation (배경음악 분리를 위한 확장된 합성곱을 이용한 멀티 밴드 멀티 스케일 DenseNet)

  • Heo, Woon-Haeng;Kim, Hyemi;Kwon, Oh-Wook
    • The Journal of the Acoustical Society of Korea
    • /
    • v.38 no.6
    • /
    • pp.697-702
    • /
    • 2019
  • We propose a multi-band multi-scale DenseNet with dilated convolution that separates background music signals from broadcast content. Dilated convolution can learn the multi-scale context information represented by spectrogram. In computer simulation experiments, the proposed architecture is shown to improve Signal to Distortion Ratio (SDR) by 0.15 dB and 0.27 dB in 0dB and -10 dB Signal to Noise Ratio (SNR) environments, respectively.

Deep Learning Algorithm to Identify Cancer Pictures (딥러닝 기반 암세포 사진 분류 알고리즘)

  • Seo, Young-Min;Han, Jong-Ki
    • Journal of Broadcast Engineering
    • /
    • v.23 no.5
    • /
    • pp.669-681
    • /
    • 2018
  • CNN (Convolution Neural Network) is one of the most important techniques to identify the kind of objects in the captured pictures. Whereas the conventional models have been used for low resolution images, the technique to recognize the high resolution images becomes crucial in the field of artificial intelligence. In this paper, we proposed an efficient CNN model based on dilated convolution and thresholding techniques to increase the recognition ratio and to decrease the computational complexity. The simulation results show that the proposed algorithm outperforms the conventional method and the thresholding technique enhances the performance of the proposed model.

Detection and Localization of Image Tampering using Deep Residual UNET with Stacked Dilated Convolution

  • Aminu, Ali Ahmad;Agwu, Nwojo Nnanna;Steve, Adeshina
    • International Journal of Computer Science & Network Security
    • /
    • v.21 no.9
    • /
    • pp.203-211
    • /
    • 2021
  • Image tampering detection and localization have become an active area of research in the field of digital image forensics in recent times. This is due to the widespread of malicious image tampering. This study presents a new method for image tampering detection and localization that combines the advantages of dilated convolution, residual network, and UNET Architecture. Using the UNET architecture as a backbone, we built the proposed network from two kinds of residual units, one for the encoder path and the other for the decoder path. The residual units help to speed up the training process and facilitate information propagation between the lower layers and the higher layers which are often difficult to train. To capture global image tampering artifacts and reduce the computational burden of the proposed method, we enlarge the receptive field size of the convolutional kernels by adopting dilated convolutions in the residual units used in building the proposed network. In contrast to existing deep learning methods, having a large number of layers, many network parameters, and often difficult to train, the proposed method can achieve excellent performance with a fewer number of parameters and less computational cost. To test the performance of the proposed method, we evaluate its performance in the context of four benchmark image forensics datasets. Experimental results show that the proposed method outperforms existing methods and could be potentially used to enhance image tampering detection and localization.

Real-time Segmentation of Black Ice Region in Infrared Road Images

  • Li, Yu-Jie;Kang, Sun-Kyoung;Jung, Sung-Tae
    • Journal of the Korea Society of Computer and Information
    • /
    • v.27 no.2
    • /
    • pp.33-42
    • /
    • 2022
  • In this paper, we proposed a deep learning model based on multi-scale dilated convolution feature fusion for the segmentation of black ice region in road image to send black ice warning to drivers in real time. In the proposed multi-scale dilated convolution feature fusion network, different dilated ratio convolutions are connected in parallel in the encoder blocks, and different dilated ratios are used in different resolution feature maps, and multi-layer feature information are fused together. The multi-scale dilated convolution feature fusion improves the performance by diversifying and expending the receptive field of the network and by preserving detailed space information and enhancing the effectiveness of diated convolutions. The performance of the proposed network model was gradually improved with the increase of the number of dilated convolution branch. The mIoU value of the proposed method is 96.46%, which was higher than the existing networks such as U-Net, FCN, PSPNet, ENet, LinkNet. The parameter was 1,858K, which was 6 times smaller than the existing LinkNet model. From the experimental results of Jetson Nano, the FPS of the proposed method was 3.63, which can realize segmentation of black ice field in real time.

Multi-Class Whole Heart Segmentation using Residual Multi-dilated convolution U-Net (Residual Multi-dilated convolution U-Net을 이용한 다중 심장 영역 분할 알고리즘 연구)

  • Lim, Sang-Heon;Choi, H.S.;Bae, Hui-Jin;Jung, S.K.;Jung, J.K.;Lee, Myung-Suk
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2019.05a
    • /
    • pp.508-510
    • /
    • 2019
  • 본 연구에서는 딥 러닝을 이용하여 완전 자동화된 다중 클래스 전체 심장 분할 알고리즘을 제안하였다. 제안된 방법은 recurrent convolutional block과 residual multi-dilated block을 삽입하여 기존 U-Net을 개선한 인공신경망 모델을 사용하였다. 평가는 자동화 분석 결과와 수동 평가를 비교하였다. 그 결과 96.88%의 평균 DSC, 95.60%의 정확도, 97.00%의 recall을 얻었다. 이 실험 결과는 제안된 방법이 다양한 심장 구조에서 효과적으로 구분되어 수행되었음을 알 수 있다. 본 연구에서 제안된 알고리즘이 의사와 방사선 의사가 영상을 판독하거나 임상 결정을 내리는데 보조적 역할을 할 것을 기대한다.

Multi-scale U-SegNet architecture with cascaded dilated convolutions for brain MRI Segmentation

  • Dayananda, Chaitra;Lee, Bumshik
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2020.11a
    • /
    • pp.25-28
    • /
    • 2020
  • Automatic segmentation of brain tissues such as WM, GM, and CSF from brain MRI scans is helpful for the diagnosis of many neurological disorders. Accurate segmentation of these brain structures is a very challenging task due to low tissue contrast, bias filed, and partial volume effects. With the aim to improve brain MRI segmentation accuracy, we propose an end-to-end convolutional based U-SegNet architecture designed with multi-scale kernels, which includes cascaded dilated convolutions for the task of brain MRI segmentation. The multi-scale convolution kernels are designed to extract abundant semantic features and capture context information at different scales. Further, the cascaded dilated convolution scheme helps to alleviate the vanishing gradient problem in the proposed model. Experimental outcomes indicate that the proposed architecture is superior to the traditional deep-learning methods such as Segnet, U-net, and U-Segnet and achieves high performance with an average DSC of 93% and 86% of JI value for brain MRI segmentation.

  • PDF