• Title/Summary/Keyword: Digital vegetation map

Search Result 49, Processing Time 0.033 seconds

Analysis on MAUP' Effects in Visibility Analysis using GIS (가시권 분석에서의 MAUP 영향 분석)

  • Lee, Joon-Hak;Kim, Hang-Deuk;Oh, Kyoung-Doo
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.12 no.1
    • /
    • pp.80-87
    • /
    • 2009
  • The purpose of this study is to analyze the MAUP's effect in visibility analysis using GIS. MAUP normally occurs in the process in terrain spatial analysis including visibility analysis. There are two different types of grid data(based on digital map and Digital Terrain Elevation Data) and 10 different types of areal units are made for modeling, such as $5m{\times}5m,\;10m{\times}10m,\;15m{\times}15m,\;20m{\times}20m,\;25m{\times}25m,\;30m{\times}30m,\;35m{\times}35m,\;40m{\times}40m,\;45m{\times}45m,\;50m{\times}50$. By analyzing the result, it was possible to observe varying viewshed areas according to different grid cell sizes and the viewshed area did not varied linearly as expected. From a general point of view, smaller unit data map out the real world in more detail, but the results of modeling do not always reach a good conclusion when data are used in modeling for terrain analysis because of the MAUP' effect. The grid cell sizes of 30m or less seems to be adequate for visibility analysis, including terrain analysis considering vegetation heights.

Automatic Analysis Model for Support Emergency Medical Helicopter Landing Zone Using Geographic Information System (GIS를 이용한 비상 의료지원 헬리콥터 착륙지점 자동 분석 모델)

  • Park, Jong-kook;Lee, Eun-seok;Kim, Jong-hee;Kim, Jeong-su;Kim, Jong-bae
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2014.05a
    • /
    • pp.338-340
    • /
    • 2014
  • The purpose of this research is to support decision making of emergency rescue system with GIS which selects landing point of emergency rescue for emergency situation on mountains and dropping point when landing is impossible. The area of research was limited to Pocheon-si, Gyeonggi-do. The results were divided into two values; landing point of helicopter on mountains and dropping point. Digital map, forest type map and forest soil map were utilized as fundamental data. Factors of landing point were slope, topographical characteristics, vegetation characteristics and area of helicopter landing point by helicopter data. And, for dropping point, slope and vegetation characteristics were divided as factors and GIS intersect function was utilized for the analysis. But, this research was conducted by excluding factor values of wind direction, wind velocity, etc. In the future, it's necessary to improve effectiveness of the analysis more by making a connection with Meteorological Agency DB.

  • PDF

The Delineation of Water-Pollutant Buffering Zone for Sustaining Better Drinking Water Quality Using a GIS (GIS를 이용한 상수원 보호를 위한 수변구역 지정에 관한 연구)

  • Kim, Kye-Hyun;Yoon, Ho-Seok;Kwon, Woo-Suk
    • Journal of Environmental Impact Assessment
    • /
    • v.9 no.3
    • /
    • pp.239-248
    • /
    • 2000
  • The aggravating water quality from the expansion of industrialization along with increasing population lead to develop more intensive physical measures to secure better drinking water quality. This study was mainly initiated to establish a water-pollutant buffering zone for the upper stream basin of Paldang--the major source area of drinking water for the metropolitan Seoul and suburban areas with a population more than 13 million. Two different criteria were considered in determining the buffering distance from the edge of the streamflow : 1km-width buffer zone for the special protection area which has been strictly controlled by the conventional laws for the protection of drinking water supply, and 500m-width buffer zone for the rest of the area. To delineate the exact boundaries of the water-pollutant buffering zone, GIS database was created integrating topography, hydrography, cadastral, and other related layers. The newly designated water-pollutant buffering zone would contribute to improve the water quality in a long term along with the conservation of the wet land. More study, however, should be made within the water-pollutant buffering zone such as the detailed survey of the pollutants, vegetation, and ecosystem for more effective management of the buffering zone.

  • PDF

Production and Accuracy Analysis of Topographic Status Map Using Drone Images (드론영상을 이용한 지형 현황도 제작 및 정확도 분석)

  • Kim, Doopyo;Back, Kisuk;Kim, Sungbo
    • Journal of the Korean GEO-environmental Society
    • /
    • v.22 no.2
    • /
    • pp.35-39
    • /
    • 2021
  • Photogrammetry using drone can produce high-resolution ortho image and acquire high-accuracy 3D information, which is useful. Therefore, this study attempted to determine the possibility of using drone-photogrammetry in park construction by producing a topographic map using drone-photogrammetry and analyzing the problems and accuracy generated during production. For this purpose, we created ortho image and DSM (digital surface model) using drone images and created topographic status map by vectorizing them. Accuracy was compared based on topographic status map by GPS (global positioning system) and TS (total station). The resulting of analyzing mean of the residuals at check points showed that 0.044 m in plane and 0.066 m in elevation, satisfying the tolerance range of 1/1,000 numerical maps, and result of compared lake size showed a difference of about 4.4%. On the other hand, it was difficult to obtain accurate height values for terrain in which existed vegetation when producing the topographic map, and in the case of underground buried objects, it is not possible to confirm it in the image, so direct spatial information acquisition was necessary. Therefore, it is judged that the topographic status map using drone photogrammetry can be efficiently constructed if direct spatial data acquisition is achieved for some terrain.

Distributed Rainfall-Runoff Modeling Using GIS (GIS를 이용한 분산형 강우-유형 모형의 개발)

  • 김경숙;박종현;윤기준;이상호
    • Korean Journal of Remote Sensing
    • /
    • v.11 no.2
    • /
    • pp.1-16
    • /
    • 1995
  • This study is conducted to eveluate the potential of a GIS to assist an application problem. GIS has been applied to rainfall-runoff modeling over Soyang area. Various rainfall-runoff models have been developed over the years. A distributed rainfall-runoff model is selected because it considers the topographic characteristics over the basin. GIS can handle the spatial data to enhance the modeling. GRASS-a public domain GIS S/W-is used for GIS tools. Digital database is generated, including soil map, vegetation map, digital elevation model, basin and subbasin map, and water stream. The inpu data for the model has been generated and manupulated using GIS. The database, model and GIS are integrated for on-line operation. The inflow hydrographs are tested for the flood of Sept., 1990. This shows the promising results even without the calibration.

An Adequate Band Selection for Vegetation Index of CASI-1500 Airborne Hyperspectral Imagery Using Image Differencing and Spectral Derivative (차연산과 분광미분을 이용한 항공 초분광영상의 식생지수 산출 적절밴드 선택)

  • Kim, Tae-Woo;We, Gwang-Jae;Suh, Yong-Cheol
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.16 no.4
    • /
    • pp.16-28
    • /
    • 2013
  • Recently the various applications and spectral indices development of airborne hyperspectral imagery(A-HSI) has been increased. Especially the vegetation indices (VIs) were used to verify stress and vigor of vegetation. The VIs needs two or more spectral bands selectively to calculate as NIR(near infrared) and red wavelength. The A-HIS has specific band characteristics as narrow, continues and many. The A-HIS has narrow, continues and many specific band characteristics. That could be make it confuse which of bands could be explained for appropriate vegetation characteristics. If the A-HIS bands is not the same the wavelength with VIs' development band setting, then it need a selection adequate for spectral characteristics of target vegetation. Therefore we set 4 substitute bands for NIR and red wavelength respectively and calculated two VIs combined with substitute bands such as NDVI(normalized difference vegetation index) and MSRI(modified simple ratio index). To consider the variation of each VIs, we adapted the image differencing method of change detection technique. Also, we used spectral derivative to identify appropriate bands for spectral characteristics of digital forest cover type map. The result of adequate bands for two VIs selected red #3 as 680.2nm and NIR #2 as 801.7nm. This wavelength was good for any forest type in low variations.

Analysis of Landslide in Inje Region Using Aerial Photograph and GIS (항공사진과 GIS를 이용한 인제지역 산사태 분석)

  • Son, Jung-Woo;Kim, Kyung-Tak;Lee, Chang-Hun;Choi, Chul-Uong
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.17 no.2
    • /
    • pp.61-69
    • /
    • 2009
  • In mid-July, 2006 the torrential rainfall across Gangwon-do region caused 48 casualties and 1,248 houses submerged, resulting in damages with the restoration costs of 3 trillion and 512.5 billion won. This was because the topographic characteristics of Gangwon-do region for which mountainous areas mostly account increased the effects of landslide. In this study, the landslide region was shot using the PKNU No.4 system immediately after the occurrence of landslide in order to analyze it as objectively, exactly, and rapidly as possible. 1,054 areas with landslide occurrence were extracted by digitizing the shot images through visual reading after orthometric correction using ERDAS 9.1. Using the Arc GIS 9.2, a GIS program, hydrologic, topographic, clinical, geologic, pedologic aspects and characteristics of the landslide region were established in database through overlay analysis of digital map, vegetation map, geologic map, and soil map, and the status and characteristics of the occurrence of the landslide were analyzed.

  • PDF

Detection of the Coastal Wetlands Using the Sentinel-2 Satellite Image and the SRTM DEM Acquired in Gomsoman Bay, West Coasts of South Korea (Sentinel-2 위성영상과 SRTM DEM을 활용한 연안습지 탐지: 서해안 곰소만을 사례로)

  • CHOUNG, Yun-Jae;KIM, Kyoung-Seop;PARK, Insun
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.24 no.2
    • /
    • pp.52-63
    • /
    • 2021
  • In previous research, the coastal wetlands were detected by using the vegetation indices or land cover classification maps derived from the multispectral bands of the satellite or aerial imagery, and this approach caused the various limitations for detecting the coastal wetlands with high accuracy due to the difficulty of acquiring both land cover and topographic information by using the single remote sensing data. This research suggested the efficient methodology for detecting the coastal wetlands using the sentinel-2 satellite image and SRTM(Shuttle Radar Topography Mission) DEM (Digital Elevation Model) acquired in Gomsoman Bay, west coasts of South Korea through the following steps. First, the NDWI(Normalized Difference Water Index) image was generated using the green and near-infrared bands of the given Sentinel-2 satellite image. Then, the binary image that separating lands and waters was generated from the NDWI image based on the pixel intensity value 0.2 as the threshold and the other binary image that separating the upper sea level areas and the under sea level areas was generated from the SRTM DEM based on the pixel intensity value 0 as the threshold. Finally, the coastal wetland map was generated by overlaying analysis of these binary images. The generated coastal wetland map had the 94% overall accuracy. In addition, the other types of wetlands such as inland wetlands or mountain wetlands were not detected in the generated coastal wetland map, which means that the generated coastal wetland map can be used for the coastal wetland management tasks.

Extraction of Building Boundary on Aerial Image Using Segmentation and Overlaying Algorithm (분할과 중첩 기법을 이용한 항공 사진 상의 빌딩 경계 추출)

  • Kim, Yong-Min;Chang, An-Jin;Kim, Yong-Il
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.30 no.1
    • /
    • pp.49-58
    • /
    • 2012
  • Buildings become complex and diverse with time. It is difficult to extract individual buildings using only an optical image, because they have similar spectral characteristics to objects such as vegetation and roads. In this study, we propose a method to extract building area and boundary through integrating airborne Light Detection and Ranging(LiDAR) data and aerial images. Firstly, a binary edge map was generated using Edison edge detector after applying Adaptive dynamic range linear stretching radiometric enhancement algorithm to the aerial image. Secondly, building objects on airborne LiDAR data were extracted from normalized Digital Surface Model and aerial image. Then, a temporary building areas were extracted by overlaying the binary edge map and building objects extracted from LiDAR data. Finally, some building boundaries were additionally refined considering positional accuracy between LiDAR data and aerial image. The proposed method was applied to two experimental sites for validation. Through error matrix, F-measure, Jaccard coefficient, Yule coefficient, and Overall accuracy were calculated, and the values had a higher accuracy than 0.85.

Distribution Pattern of Pinus densiflora and Quercus Spp. Stand in Korea Using Spatial Statistics and GIS (공간통계와 GIS를 이용한 소나무림과 참나무류림의 분포패턴)

  • Lee, Chong-Soo;Lee, Woo-Kyun;Yoon, Jeong-Ho;Song, Chul-Chul
    • Journal of Korean Society of Forest Science
    • /
    • v.95 no.6
    • /
    • pp.663-671
    • /
    • 2006
  • This study was performed for exploring the spatial distribution pattern of Pinus densiflora and Quercus spp. in Korea. Firstly, the spatial distribution map of Pinus densiflora and Quercus spp. was prepared in grid of $100m{\times}100m$ at national level, using digital forest type map and actual vegetation map. And thematic maps for topography, climate, and soil were also prepared in the raster form of $100m{\times}100m$. Through GIS based spatial analysis of the digital distribution map of Pinus densiflora and Quercus spp. and thematic maps, the spatial characteristics of Pinus densiflora and Quercus spp. distribution was explored in relation to the environmental factors such as topography, climate, and soil. And the occurrence frequency models of Pinus densiflora and Quercus spp. were derived. Pinus densiflora occurs more often than Quercus spp. at low elevation, low slope gradient, and high temperature areas. In addition, Pinus densiflora is mainly distributed at shallow and well-drained loamy soil from igneous rocks. In contrast, Quercus spp. is more common at shallow and well-drained loamy soil from metamorphic rocks. As a result, the prediction model for the spatial distribution of Pinus densiflora and Quercus spp. by topographical variables has proven successful with high statistical significance. The result of this study can contribute to rational management of Pinus densiflora and Quercus spp. stand in Korea, considering environmental factors such as topography, climate, and soil.