• Title/Summary/Keyword: Digital orthophoto

Search Result 70, Processing Time 0.025 seconds

Quality Assessment of Digital Surface Model Vertical Position Accuracies by Ground Control Point Location (지상기준점 선점 위치에 따른 DSM 높이 정확도 분석)

  • Lee, Jong Phil
    • Journal of Cadastre & Land InformatiX
    • /
    • v.51 no.1
    • /
    • pp.125-136
    • /
    • 2021
  • Recently, Unmanned Aerial Vehicle utilization and image processing technology for remote sensing have diversified remarkably with Orthophoto and Digital Surface Model. In particular, It uses more application fields such as spatial information analysis and hazardous areas as well as land surveying. This study analyses the accuracy of the coordinate on Orthophoto and DSM height on slope area with high and low differences by using UAV images. As the result of this study, in the case of GCP on 2D orthophoto, the location error was not produced significantly. The vertical position of the DSM showed the highest accuracy when the height difference between GCPs is under 30m(RMSEZ=0.07m). The location of the GCPs was divided into approximately 10m, 20m, 30m, and 40m with analysis for each of the eight points of GCP and inspection points in general. This study expects that producing both horizontal accuracy of Orthophoto and vertical accuracy of DSM using UAV on the sloped area which similar to this research area will help in spatial information fields.

Generation of True-Orthphotos using a LIDAR DSM (라이다 DSM을 이용한 엄밀정사영상 제작)

  • Park, Sun-Mi;Lee, Im-Pyeong;Cho, Seong-Kil;Min, Seong-Hong;Oh, So-Jung
    • Proceedings of the Korean Society of Surveying, Geodesy, Photogrammetry, and Cartography Conference
    • /
    • 2007.04a
    • /
    • pp.273-276
    • /
    • 2007
  • In this study, we generated DSM(Digital Surface Model)s and orthophotos with both LIDAR data and scanned aerial photos and compared them with those generated from only the scanned photos. We checked the relief displacements of buildings appearing in the generated orthophotos, where the displacement should not be exist in a true-orthophoto. The RMSE of the relief displacement in the orthophoto generated using a LIDAR DSM is 3 m while the RMSE in the orthophotos from a DSM based on the image matching is 6.1 m. It was revealed that the orthophoto from a LIDAR DSM are closer to a true-orthophoto. But the results in the accuracy test and similarity evaluation of the generated orthophotos were contrary to former results because the roof texture of buildings were expanded to occlusion areas around the buildings. With the central area of the photo, we can generate sufficiently accurate true-orthophotos using a LIDAR DSM.

  • PDF

The Generation of Accurate Digital Orthophoto by DTM Accuracy Improvement (DTM의 정확도 향상에 의한 정밀 수치정사사진 생성)

  • 박운용;이기부;정성모;이인수
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.16 no.2
    • /
    • pp.243-250
    • /
    • 1998
  • From early plane-table photogrammetry through the analog and analytical stages, photogrammetry has now reached the digital photogrammetry stage using the image stored at computers. Digital Photogrammetry using aerial photograph generates the DTM and digital orthophoto. Expecially, DTM is important for improving the accuracy of digital ortho photo. so Many experimental are required. In this study, therefore deals with the generation process of digital orthophotos using DTM with breakline and without breakline.

  • PDF

Orthophoto and DEM Generation Using Low Specification UAV Images from Different Altitudes (고도가 다른 저사양 UAV 영상을 이용한 정사영상 및 DEM 제작)

  • Lee, Ki Rim;Lee, Won Hee
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.34 no.5
    • /
    • pp.535-544
    • /
    • 2016
  • Even though existing methods for orthophoto production using expensive aircraft are effective in large areas, they are drawbacks when dealing with renew quickly according to geographic features. But, as UAV(Unmanned Aerial Vehicle) technology has advanced rapidly, and also by loading sensors such as GPS and IMU, they are evaluates that these UAV and sensor technology can substitute expensive traditional aerial photogrammetry. Orthophoto production by using UAV has advantages that spatial information of small area can be updated quickly. But in the case of existing researches, images of same altitude are used in orthophoto generation, they are drawbacks about repetition of data and renewal of data. In this study, we targeted about small slope area, and by using low-end UAV, generated orthophoto and DEM(Digital Elevation Model) through different altitudinal images. The RMSE of the check points is σh = 0.023m on a horizontal plane and σv = 0.049m on a vertical plane. This maximum value and mean RMSE are in accordance with the working rule agreement for the aerial photogrammetry of the National Geographic Information Institute(NGII) on a 1/500 scale digital map. This paper suggests that generate orthophoto of high accuracy using a different altitude images. Reducing the repetition of data through images of different altitude and provide the informations about the spatial information quickly.

An Improvement of Cadastral Non-coincidence Surveying Method using Digital Orthophoto (수치정사사진을 이용한 지적불부합지 조사 방법의 개선)

  • Hong, Sung-Eon
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.14 no.2 s.36
    • /
    • pp.23-32
    • /
    • 2006
  • This study shows that new methodology improved the problem of unaided eye test level with the digital orthophoto technique can survey more objectively and efficiently any cadastral non-coincidence than existing prior methodologies. For applying to it, we explore eligible other methodologies, and then build up the application strategy of them. New prototype system is implemented with it. Also, we say the availability of new methodology by applying to study area. As a result, we suggest cadastral non-coincidence surveying method based on point-correspondence more objective and more efficient. As a result of comparing with old method and new on same study area for making adequacy, they hardly ever has the difference of accuracy. Constantly, cadastral non-coincidence surveying method based on point-correspondence is acceptable way on the cadastral survey.

  • PDF

An Analysis on the Error of the Present Situation-Based Serial Cadastral Map Production Using GIS and Digital Orthophoto (GIS와 수치정사사진을 이용한 현황 중심의 연속지적도 제작 오류 분석)

  • Hong, Sung-Eon;Kim, Yun-Ki;Park, Jong-Oh
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.17 no.4
    • /
    • pp.105-112
    • /
    • 2009
  • The present serial cadastral maps, which have lots of problems arisen from map matching processes, have very limited applications. That is, the poor quality of serial cadastral maps has kept us from using them. Therefore, a special project for improving the quality of serial cadastral maps was proposed by korean cadastral specialists to solve those problems. The primary purpose of this study is to provide effective ways of serial cadastral map production by reviewing the errors of the present situation-based serial cadastral map production using GIS and digital orthophoto.

  • PDF

Orthophoto and DEM Generation in Small Slope Areas Using Low Specification UAV (저사양 무인항공기를 이용한 소규모 경사지역의 정사영상 및 수치표고모델 제작)

  • Park, Jin Hwan;Lee, Won Hee
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.34 no.3
    • /
    • pp.283-290
    • /
    • 2016
  • Even though existing methods for orthophoto production in traditional photogrammetry are effective in large areas, they are inefficient when dealing with change detection of geometric features and image production for short time periods in small areas. In recent years, the UAV (Unmanned Aerial Vehicle), equipped with various sensors, is rapidly developing and has been implemented in various ways throughout the geospatial information field. The data and imagery of specific areas can be quickly acquired by UAVs at low costs and with frequent updates. Furthermore, the redundancy of geospatial information data can be minimized in the UAV-based orthophoto generation. In this paper, the orthophoto and DEM (Digital Elevation Model) are generated using a standard low-end UAV in small sloped areas which have a rather low accuracy compared to flat areas. The RMSE of the check points is σH = ±0.12 m on a horizontal plane and σV = ±0.09 m on a vertical plane. As a result, the maximum and mean RMSE are in accordance with the working rule agreement for the airborne laser scanning surveying of the NGII (National Geographic Information Institute) on a 1/500 scale digital map. Through this study, we verify the possibilities of the orthophoto generation in small slope areas using general-purpose low specification UAV rather than a high cost surveying UAV.

Producing True Orthophoto Using Multi-Dimensional Spatial Information (다차원공간정보를 이용한 실감정사영상 제작 방안)

  • Lee, Hyun-Jik
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.26 no.3
    • /
    • pp.241-253
    • /
    • 2008
  • Recently, it is appearing that new paradigm of urban planning that ubiquitous concept such as the u-City, uECO-City is introduced while is rising necessity about third dimensional geo-spatial information of high quality for urban area. Orthophoto can manufacture by expense and time that is less easily than digital map using personal computer even if is not highly technician and according as position relation between manmade feature and natural feature is equal, can get information of distance, angle, horizontal and vertical position coordinate of topographic, area etc.. directly through orthophoto. Also, visual effect is good that orthophoto is expressed by image and interpretation is easy to detailed part of topographic. Manufacture and practical use are consisting in various field, for it is having advantage that can recognize information effectively than digital map. Therefore, this study presents a way of generating a detailed DSM for producing a true-orthphoto of the urban area, and this study also presents a way to produce an optimum true-orthophoto for an urban area by investigating through experiment the optimum variable for the geometric and radiometric correction of the orthophoto. This study also examined the potentials of the thesis by building a 3-dimensional city model of the model region with the above thesis on optimum generating method.

A Study on the Selection of Building Registration Method using GIS (GIS를 이용한 건물등록 방법 선정에 관한 연구)

  • 양인태;오이균;유영걸;천기선
    • Proceedings of the Korean Association of Geographic Inforamtion Studies Conference
    • /
    • 2004.03a
    • /
    • pp.613-616
    • /
    • 2004
  • Recently, in a field of cadastre, a computerization of cadastral map is in progress with great growth of GSIS field. Also, the needs for the integration of land and building information are widely increasing for integral-management and its application of various land related information. Through a revision of cadastral laws to replace the existing 2D-Cadastre with the 3D-Cadastre, a legal basis to register the position of buildings and facilities is prepared in the governmental or civil fields. This paper presented 3D-Cadastre theory that has been studied on Europe and surveyed building position directly with Totalstation at cadastral control point after choosing pilot test area, Also, the most efficient surveying method of registering building in a cadastral map is presented with comparing and analyzing building position after surveying digital orthophoto and digital map.

  • PDF