• Title/Summary/Keyword: Digital imaging system

Search Result 509, Processing Time 0.026 seconds

Spatial Frequency Filtering Characteristics of Annular Phase Gratings (고리형 위상 격자의 공간 주파수 필터 효과)

  • 김인길;고춘수;임성우;오용호;이재철
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.17 no.9
    • /
    • pp.994-1000
    • /
    • 2004
  • We studied the characteristics of annular phase gratings as spatial frequency filters. We first calculated the Fraunhofer diffraction patterns of annular gratings and then got the modulation transfer function (MTF) from the zeroth order Hankel transform of the intensity distribution function. Binaryphase annular grating shows higher diffraction efficiency than binary phase rectangular grating. But the MTF decreases linearly in the low-frequency region as that of rectangular grating does. The diffraction pattern of 4-phase annular grating is similar to that of 2-phase grating and hence MTFs of the two are much alike. For 8-phase annular grating, the 7th order diffracted beam is the lowest one next to the first. Consequently, the diffraction efficiency is very high and the MTF graph is curved upward. The diffracted beams except the first order are negligible and hence the MTF characteristics are more improved in the case of 16-phase grating. But the degree of improvement becomes lowered c(Impaled with 8-phase grating. We made a 16-phase annular grating and measured its MTF. The experimental result agrees well with the calculated one.

Effect of Neurodynamics on Pain and Paresthesia in Post-operated Patients with Lumbar Disc Herniation

  • Jang, Ki-ryong;Park, Ji-Won;Nam, Kiseok
    • The Journal of Korean Physical Therapy
    • /
    • v.32 no.2
    • /
    • pp.80-87
    • /
    • 2020
  • Purpose: Some patients who have undergone surgery due to lumbar disc herniation still complain of leg pain and other abnormal sensations. Therefore, the study examined the effects of the neurodynamics on pain and other abnormal nerve sensations in post-operated patients with lumbar disc herniation. Methods: The participants of this study comprised 20 adults (10 males and 10 females) who were diagnosed with lumbar disc herniation. The subjects were classified into two groups of 10 patients each in the lower extremity neurodynamics (LEN) and lumbar stabilization exercise (LSE) groups. Each intervention was applied twice a day for one week and was composed of two different exercise patterns; one was applied by a therapist, and the other was performed by the patients themselves. The data were analyzed using assessment methods of Digital Infrared Thermal Imaging (DITI), Toronto clinical neuropathy scoring system (TCNSS), Sympathetic Skin Response (SSR) test, and Oswestry Disability Index (ODI) scale. Results: Significant differences in TCNSS, DITI, ODI scale were observed between the LEN and LSE group (p<0.01). On the other hand, there was no significant difference in the SSR test between pre and post-treatment (p>0.05). Conclusion: The results indicated that neurodynamics treatment is effective in pain reduction and abnormal sensations, such as leg muscle cramps, in post-operated patients with lumbar disc herniation.

Scene-based non-uniformity correction for thermal imaging system using microscanning effect (미세주사효과를 이용한 배경기반 열영상 불균일 보정 기법)

  • Song, In-Seob;Ra, Sung-Woong
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.37 no.3
    • /
    • pp.11-16
    • /
    • 2000
  • In this paper, a real-time implementation of scene-based non-uniformity correction by digital technique is proposed for microscan-mode staring infrared cameras. Most scene-based non-uniformity correction algorithms, without sensor motion, can not be applied to stationary scenes because of image blurring and fading. Using microscanning effect, coupled with a modified version of Scribner's algorithm, the proposed technique can correct the artifacts and non-uniformities in real time Computer simulations and hardware experiments demonstrate substantial Improvement of image qualities in stationary as well as moving scenes.

  • PDF

Implementation of Photovoltaic Panel failure detection system using semantic segmentation (시멘틱세그멘테이션을 활용한 태양광 패널 고장 감지 시스템 구현)

  • Shin, Kwang-Seong;Shin, Seong-Yoon
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.25 no.12
    • /
    • pp.1777-1783
    • /
    • 2021
  • The use of drones is gradually increasing for the efficient maintenance of large-scale renewable energy power generation complexes. For a long time, photovoltaic panels have been photographed with drones to manage panel loss and contamination. Various approaches using artificial intelligence are being tried for efficient maintenance of large-scale photovoltaic complexes. Recently, semantic segmentation-based application techniques have been developed to solve the image classification problem. In this paper, we propose a classification model using semantic segmentation to determine the presence or absence of failures such as arcs, disconnections, and cracks in solar panel images obtained using a drone equipped with a thermal imaging camera. In addition, an efficient classification model was implemented by tuning several factors such as data size and type and loss function customization in U-Net, which shows robust classification performance even with a small dataset.

Design and Implementation of an Absolute Position Sensor Based on Laser Speckle with Reduced Database

  • Tak, Yoon-Oh;Bandoy, Joseph Vermont B.;Eom, Joo Beom;Kwon, Hyuk-Sang
    • Current Optics and Photonics
    • /
    • v.5 no.4
    • /
    • pp.362-369
    • /
    • 2021
  • Absolute position sensors are widely used in machine tools and precision measuring instruments because measurement errors are not accumulated, and position measurements can be performed without initialization. The laser speckle-based absolute position sensor, in particular, has advantages in terms of simple system configuration and high measurement accuracy. Unlike traditional absolute position sensors, it does not require an expensive physical length scale; instead, it uses a laser speckle image database to measure a moving surface position. However, there is a problem that a huge database is required to store information in all positions on the surface. Conversely, reducing the size of the database also decreases the accuracy of position measurements. Therefore, in this paper, we propose a new method to measure the surface position with high precision while reducing the size of the database. We use image stitching and approximation methods to reduce database size and speed up measurements. The absolute position error of the proposed method was about 0.27 ± 0.18 ㎛, and the average measurement time was 25 ms.

Real-Time Fixed Pattern Noise Suppression using Hardware Neural Networks in Infrared Images Based on DSP & FPGA (DSP & FPGA 기반의 적외선 영상에서 하드웨어 뉴럴 네트워크를 이용한 실시간 고정패턴잡음 제어)

  • Park, Chang-Han;Han, Jung-Soo;Chun, Seung-Woo
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.46 no.4
    • /
    • pp.94-101
    • /
    • 2009
  • In this paper, we propose design of hardware based on a high speed digital signal processor (DSP) and a field programmable gate array (FPGA) for real-time suppression of fixed pattern noise (FPN) using hardware neural networks (HNN) in cooled infrared focal plane array (IRFPA) imaging system FPN appears a limited operation by temperature in observable images which applies to non-uniformity correction for infrared detector. These have very important problems because it happen serious problem for other applications as well as degradation for image quality in our system Signal processing architecture for our system operates reference gain and offset values using three tables for low, normal, and high temperatures. Proposed method creates virtual tables to separate for overlapping region in three offset tables. We also choose an optimum tenn of temperature which controls weighted values of HNN using mean values of pixels in three regions. This operates gain and offset tables for low, normal, and high temperatures from mean values of pixels and it recursively don't have to do an offset compensation in operation of our system Based on experimental results, proposed method showed improved quality of image which suppressed FPN by change of temperature distribution from an observational image in real-time system.

Positive Random Forest based Robust Object Tracking (Positive Random Forest 기반의 강건한 객체 추적)

  • Cho, Yunsub;Jeong, Soowoong;Lee, Sangkeun
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.52 no.6
    • /
    • pp.107-116
    • /
    • 2015
  • In compliance with digital device growth, the proliferation of high-tech computers, the availability of high quality and inexpensive video cameras, the demands for automated video analysis is increasing, especially in field of intelligent monitor system, video compression and robot vision. That is why object tracking of computer vision comes into the spotlight. Tracking is the process of locating a moving object over time using a camera. The consideration of object's scale, rotation and shape deformation is the most important thing in robust object tracking. In this paper, we propose a robust object tracking scheme using Random Forest. Specifically, an object detection scheme based on region covariance and ZNCC(zeros mean normalized cross correlation) is adopted for estimating accurate object location. Next, the detected region will be divided into five regions for random forest-based learning. The five regions are verified by random forest. The verified regions are put into the model pool. Finally, the input model is updated for the object location correction when the region does not contain the object. The experiments shows that the proposed method produces better accurate performance with respect to object location than the existing methods.

Initial Experience of Transperineal Biopsy After Multiparametric Magnetic Resonance Imaging in Korea; Comparison With Transrectal Biopsy

  • Yoon, Sung Goo;Jin, Hyun Jung;Tae, Jong Hyun;No, Tae Il;Kim, Jae Yoon;Pyun, Jong Hyun;Shim, Ji Sung;Kang, Sung Gu;Cheon, Jun;Lee, Jeong Gu;Kim, Je Jong;Sung, Deuk Jae;Lee, Kwan Hyi;Kang, Seok Ho
    • The Korean Journal of Urological Oncology
    • /
    • v.16 no.3
    • /
    • pp.110-118
    • /
    • 2018
  • Purpose: The aim of this study is to confirm the detection rate of transperineal biopsy after multiparametric magnetic resonance imaging (mpMRI) and compared it to that of transrectal biopsy. We also examined the role of mpMRI and the rate of complications for each method. Materials and Methods: In a retrospective study, we analyzed 147 patients who underwent mpMRI before prostate biopsy because of elevated serum prostate-specific antigen and/or abnormal digital rectal examination findings at Korea University Hospital, Seoul, Korea from March 2017 to April 2018. Regions on the mpMRI that were suggestive of prostate cancer were categorized according to the Prostate Imaging-Reporting and Data System (PI-RADS v2). For transperineal biopsy, a 20-core saturation biopsy was performed by MRI-TRUS cognitive or fusion techniques and a 12-core biopsy was performed in transrectal biopsy. Results: Sixty-three and 84 patients were enrolled in transperineal group and transrectal group, respectively. The overall detection rate of prostate cancer in transperineal group was 27% higher than that in transrectal group. Classification according to PI-RADS score revealed a significant increase in detection rate in all patients, as the PI-RADS score increased. Frequency of complications using the Clavien-Dindo classifications revealed no significant differences in the total complications rate, but two patients in transrectal group received intensive care unit care due to urosepsis. Conclusions: Our results confirmed that transperineal biopsy is superior to transrectal biopsy for the detection of prostate cancer. From the complication point of view, this study confirmed that there were fewer severe complications in transperineal biopsy.

Detection of Contralateral Breast Cancer Using Diffusion-Weighted Magnetic Resonance Imaging in Women with Newly Diagnosed Breast Cancer: Comparison with Combined Mammography and Whole-Breast Ultrasound

  • Su Min Ha;Jung Min Chang;Su Hyun Lee;Eun Sil Kim;Soo-Yeon Kim;Yeon Soo Kim;Nariya Cho;Woo Kyung Moon
    • Korean Journal of Radiology
    • /
    • v.22 no.6
    • /
    • pp.867-879
    • /
    • 2021
  • Objective: To compare the screening performance of diffusion-weighted (DW) MRI and combined mammography and ultrasound (US) in detecting clinically occult contralateral breast cancer in women with newly diagnosed breast cancer. Materials and Methods: Between January 2017 and July 2018, 1148 women (mean age ± standard deviation, 53.2 ± 10.8 years) with unilateral breast cancer and no clinical abnormalities in the contralateral breast underwent 3T MRI, digital mammography, and radiologist-performed whole-breast US. In this retrospective study, three radiologists independently and blindly reviewed all DW MR images (b = 1000 s/mm2 and apparent diffusion coefficient map) of the contralateral breast and assigned a Breast Imaging Reporting and Data System category. For combined mammography and US evaluation, prospectively assessed results were used. Using histopathology or 1-year follow-up as the reference standard, cancer detection rate and the patient percentage with cancers detected among all women recommended for tissue diagnosis (positive predictive value; PPV2) were compared. Results: Of the 30 cases of clinically occult contralateral cancers (13 invasive and 17 ductal carcinoma in situ [DCIS]), DW MRI detected 23 (76.7%) cases (11 invasive and 12 DCIS), whereas combined mammography and US detected 12 (40.0%, five invasive and seven DCIS) cases. All cancers detected by combined mammography and US, except two DCIS cases, were detected by DW MRI. The cancer detection rate of DW MRI (2.0%; 95% confidence interval [CI]: 1.3%, 3.0%) was higher than that of combined mammography and US (1.0%; 95% CI: 0.5%, 1.8%; p = 0.009). DW MRI showed higher PPV2 (42.1%; 95% CI: 26.3%, 59.2%) than combined mammography and US (18.5%; 95% CI: 9.9%, 30.0%; p = 0.001). Conclusion: In women with newly diagnosed breast cancer, DW MRI detected significantly more contralateral breast cancers with fewer biopsy recommendations than combined mammography and US.

Evaluation of Image Quality & Absorbed Dose using MCNPX Simulation in the Digital Radiography System (디지털방사선영상시스템에서 MCNPX 시뮬레이션을 이용한 영상 품질 및 선량평가)

  • An, Hyeon;Lee, Dongyeon;Ko, Sungjin;Kim, Changsoo
    • Journal of the Korean Society of Radiology
    • /
    • v.10 no.5
    • /
    • pp.327-335
    • /
    • 2016
  • The study is enforce to study image quality evaluation of condition provide the IEC and combination of clinical conditions each quality of radiation that image quality to assess the conditions provided to IEC in the clinical environment to conduct image quality assessment of the digital radiography system in the detector have environmental limits. First, image quality evaluation was evaluated by measuring the MTF, NPS using four quality of radiation and Using MCNPX simulation lastly DQE make a image quality evaluation after calculating the particle fluence to analyze spectrum quality of radiation. Second, Using MCNPX simulation of four quality of radiation was evaluated absorbed dose rate about electronic 1 per unit air, water, muscle, bone by using Radiation flux density and energy, mass-energy absorption coefficient of matter. Results of evaluation of image quality, MTF of four quality of radiation was satisfied diagnosis frequency domain 1.0 ~ 3.0 lp/mm of general X-ray that indicated 1.13 ~ 2.91 lp/mm spatial frequency. The NPS has added filter, spatial frequency 0.5 lp/mm at standard NPS showed a tendency to decrease after increase. Unused added filter, spatial frequency 0.5 lp/mm at standard NPS showed a certain NPS result value after decrease. DQE in 70 kVp / unuesd added filter(21 mm Al) / SID 150 cm that patial frequency 1.5 lp/mm at standard showed a tendency to decrease after certain value showed. Patial frequency in the rest quality of radiation was showed a tendency to decrease after increase. Results of evaluation of absorbed dose, air < water < muscle < bone in the order showed a tendency to increase. Based on the results of this study provide to basic data that present for the image quality evaluation method of a digital radiation imaging system in various the clinical condition.