• Title/Summary/Keyword: Digital contouring control

Search Result 10, Processing Time 0.026 seconds

Digital Receding Time Horizon LQ Optimal Contour Control System (디지털 후퇴 유한시간 구간 LQ 최적 윤곽제어시스템)

  • Sim, Young-Bok;Lee, Gun-Bok
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.15 no.6
    • /
    • pp.105-113
    • /
    • 2006
  • This work is concerned with the development of digital contouring controller for multi-axial servosystems. Digital optimal contouring controller is proposed to coordinate each of the controllers of multiple feed drives and specifically improve the contouring performance. The optimal control formation includes the contour error explicitly in the performance index to be minimized. The contouring control is exercised for straight line and circular contours. Substantial improvement in contouring performance is obtained for a range of contouring conditions. Both steady state and transient error measures have been considered. The simulation study presented has established the potential of the proposed controller to improve contouring performance.

Digital Contouring Control of Multi-axial System (다축 시스템의 디지틀 윤곽제어)

  • 이건북;소의열;조원익;최장욱
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1996.04a
    • /
    • pp.466-471
    • /
    • 1996
  • This work is concerned with the development of digital contouring controller formulti-axial servosystems. Digital optimal contouring controller is proposed to coordinate each of the controllers of multiple feed drives and specifically improve the controuring performance. The optimal control formulation includes the contour error explicity in the performance index to be minimized. The contouring control is exercised for straight line and circular contours. Substantial improvement in contouring perfomance is obtained for a range of contouring conditions. Both steady state and transient error measures have been considered. The simulation study presented has estiblished the potential of the proposed controller to improve contourning perfomance.

  • PDF

Optimal Control for Synchronizing Positions of Multi-Axis Driving System with Cross-Coupled Structure (다축 구동 시스템의 교차식 구조를 이용한 최적 위치동기 제어)

  • 주백석;김성수;홍대희;박진무;조태연
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2001.04a
    • /
    • pp.271-274
    • /
    • 2001
  • The present paper deals with the development of digital contouring controller for multiaxial servosystem. Instead of coordinating the commands to the individual feed drives and implementing closed position loop control for each axis, this work is achieved by the evaluation of a optimal cross-couple compensator aimed specifically at improving contouring accuracy in multi-axial feed drives. The optimal control formulation explicitly includes the contour error in the performance index to be minimized. The contouring control is simulated for straight line. The results show that the proposed controller reduces contouring errors considerably, as compared to the conventional uncoupled control for biaxial systems.

  • PDF

Precise Digital Tracking Control for Multi-Axis Servo System (다축 서보시스템의 정밀 추적제어)

  • Shin, Doo-Jin;Huh, Uk-Youl
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.49 no.11
    • /
    • pp.591-598
    • /
    • 2000
  • In this thesis, a digital tracking controller is proposed for multi-axis position control system. Tracking and contouring error exist when the machine tool moves along a trajectory in multi-axis system. The proposed scheme enhances the tracking and contouring performance by reducing the errors. Also, an optimal tracking controller reduces the tracking error by the state feedback and the feedforward compensator reduces the effects of a nonlinear disturbance such as friction or dead zone. The proposed control scheme reduces the contour error which occurred when the tool tracks the reference trajectory. Finally, the performance of the proposed controller is exemplified by some simulations and by applying the real XY servo system.

  • PDF

Asymmetrical Contouring Control of Biaxial System (2축 시스템의 비대칭 윤곽제어)

  • Sim, Young Bok;Jung, Yu Chul;Lee, Gun Bok
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.14 no.8
    • /
    • pp.65-72
    • /
    • 1997
  • An asymmetrical cross-coupled compensator to improve the contouring performance is proposed. This is a refinement of the structure suggested by Koren. The position loop is closed with a proportional controller as in the uncoupled system. An additional input term proportional to the component of the contour error along the corresponding axis is included. The controller gains are chosen to give an appropriate frequency response and an optimum range for the damping ratio. The effectiveness of the proposed controller is studied by means of digital simulations of the dynamics of the drives and the controller for 4 types of command trajectories: straight line contour, cornering contour, circular contour, elliptic contour. Substantial improvement in contouring performance is obtained for a range of contouring conditions.

  • PDF

Digital Contouring Control of Biaxial System (2축 디지틀 윤곽제어)

  • Lee, Gun-Bok;Ko, Tae-Geun
    • Proceedings of the KIEE Conference
    • /
    • 1998.11b
    • /
    • pp.435-437
    • /
    • 1998
  • In this productive system, it needs to control the each axis motion harmoniously to perform accurately for the manufacturing, transporting and printing. Independent Axis Control usually used for this objection. However, if Independent Axis Control mismatched the parameter of each axis system or in the case of free curve tracking or the case of high speed control, there would be big contour error so that cannot achieve control objection. As a result, there is Contour Control method suggested to supply for this defect. This paper carried modeling of biaxial system and implemented Independent Axis Control & Contouring Control on straight line, circular, and coner path by simulation and experiment. If feedrate increased, contour error growed. In consequence, according to this factor, we introduced contouring controller, so we could find the fact that contour error was reduced more than that of independent axis control about each path.

  • PDF

Development of Software Interpolator for Two-Axis Contouring Control (2축 윤곽제어를 위한 소프트웨어 보간자 개발에 관한 연구)

  • 김교형;이기설
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.12 no.2
    • /
    • pp.389-396
    • /
    • 1988
  • Microprocessor-based software DDA interpolator is developed and applied to two axis contouring control of X-Y table. Developed assembly program is composed of feedrate, linear and circular DDA interpolation routines. Reference-pulse type of open-loop stepping motor control system in which the micro-computer produces a sequence of reference pulses for each axis of motion is adopted. To test performance of the developed program, X-Y table drive system based on stepping motor and shaft encoder is designed. Conturing error of the system in linear and circular path is within .+-. 0.2mm under start stop pulse rate of stepping motor.

Asymmetrical Contouring Control of Biaxial System (2축 시스템의 비대칭 윤곽제어)

  • 이건복;심영복;정유철
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1996.11a
    • /
    • pp.277-282
    • /
    • 1996
  • An asymmetrical cross-coupled compensator to improve the contouring performance is proposed. This is a refinement of the structure suggested by Koren. The position loop is closed with a proportional controller as in the uncoupled system. An additional input term proportional to the component of the contour error along the corresponding axis Is included. The controller gains are chosen to give an appropriate frequency response and an optimum range for the damping ratio. The effectiveness of the proposed controller is studied by means of digital simulations of the dynamics of the drives and the controller for 3 types of command trajectories; straight line contour, cornering contour, circular contour. Substantial improvement in contouring performance is obtained for a range of contouring conditions.

  • PDF

Precise Digital Tracking Controller for CNC Machine Tools

  • Jeung, Dong-Hyo;Shin, Doo-Jin
    • Proceedings of the KIEE Conference
    • /
    • 2001.07e
    • /
    • pp.58-61
    • /
    • 2001
  • The purpose of this paper is a fuzzy logic controller for XY positioning system. The overall control system consists of three parts, the position controller, the speed controller, the fuzzy logic controller. Precise tracking is achieved by fuzzy logic controller. In practice, such systems contain many uncertainties. Therefore, the XY positioning system must receive and evaluate the motion of all axis for a better contouring accuracy. Cross coupled controller utilizes all axis position error information simultaneously to produce accurate contours. However, the existing Cross coupled controllers cannot overcome friction, backlash and parameter variation. So, we propose a fuzzy logic controller of XY positioning system. Experimental results show that the proposed fuzzy logic controller is effective to improve the contouring accuracy of XY positioning system.

  • PDF

A Cost-Effective Land Surveying System for Engineering Applications

  • El-Ashmawy, Khalid L.A.
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.11
    • /
    • pp.373-380
    • /
    • 2022
  • The field of land surveying is changing dramatically due to the way data is processed, analyzed and presented. Also, there is a growing demand for digital spatial information, coming primarily from the GIS (Geographical Information System) user community. Such a demand has created a strong development potential for a new land surveying software. An overview of the development and capabilities of a land surveying software platform based on the Windows system, SurveyingMap, is presented. Among its many features, SurveyingMap provides a lot of adaptability for networks adjustment, geodetic and plane coordinates transformation, contouring, sectioning, DTM (Digital Terrain Model) generation, and large scale mapping applications. The system output is compatible with well known computer aided drafting (CAD) /GIS packages to expand its scope of applications. SurveyingMap is also suitable for non-technical users due to the user-friendly graphic user interface. The system could be used in engineering, architecture, GIS, and academic teaching and research, among other fields. Two applications of SurveyingMap, extension of field control and large scale mapping, for the case study area are established. The results demonstrate that the system is adaptable and reasonably priced for use by college and university students.