• Title/Summary/Keyword: Digital circuits

Search Result 600, Processing Time 0.033 seconds

A Study on the VLSI Design of Efficient Color Interpolation Technique Using Spatial Correlation for CCD/CMOS Image Sensor (화소 간 상관관계를 이용한 CCD/CMOS 이미지 센서용 색 보간 기법 및 VLSI 설계에 관한 연구)

  • Lee, Won-Jae;Lee, Seong-Joo;Kim, Jae-Seok
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.43 no.11 s.353
    • /
    • pp.26-36
    • /
    • 2006
  • In this paper, we propose a cost-effective color filter may (CFA) demosaicing method for digital still cameras in which a single CCD or CMOS image sensor is used. Since a CFA is adopted, we must interpolate missing color values in the red, green and blue channels at each pixel location. While most state-of-the-art algorithms invest a great deal of computational effort in the enhancement of the reconstructed image to overcome the color artifacts, we focus on eliminating the color artifacts with low computational complexity. Using spatial correlation of the adjacent pixels, the edge-directional information of the neighbor pixels is used for determining the edge direction of the current pixel. We apply our method to the state-of-the-art algorithms which use edge-directed methods to interpolate the missing color channels. The experiment results show that the proposed method enhances the demosaiced image qualify from $0.09{\sim}0.47dB$ in PSNR depending on the basis algorithm by removing most of the color artifacts. The proposed method was implemented and verified successfully using verilog HDL and FPGA. It was synthesized to gate-level circuits using 0.25um CMOS standard cell library. The total logic gate count is 12K, and five line memories are used.

Implementation of a Web-based Hybrid Engineering Experiment System for Enhancing Learning Efficiency (학습효율 향상을 위한 웹기반 하이브리드 공학실험시스템 구현)

  • Kim, Dong-Sik;Choi, Kwan-Sun;Lee, Sun-Heum
    • Journal of Engineering Education Research
    • /
    • v.10 no.3
    • /
    • pp.79-92
    • /
    • 2007
  • To enhance the excellence, effectiveness and economical efficiency in the learning process, we implement a hybrid educational system for engineering experiments where web-based virtual laboratory systems and distance education systems are properly integrated. In the first stage, we designed client/server distributed environment and developed web-based virtual laboratory systems for digital systems and electrical/electronic circuit experiments. The proposed virtual laboratory systems are composed of four important sessions and their management system: concept learning session, virtual experiment session, assessment session. With the aid of the management system every session is organically tied up together to achieve maximum learning efficiency. In the second stage, we have implemented efficient and cost-effective distant laboratory systems for practicing electric/electronic circuits, which can be used to eliminate the lack of reality occurred during virtual laboratory session. The use of simple and user-friendly design allows a large number of people to access our distant laboratory systems easily. Thus, self-guided advanced training is available even if a lot of expensive equipment will not be provided in the on-campus laboratories. The proposed virtual/distant laboratory systems can be used in stand-alone fashion, but to enhance learning efficiency we integrated them and developed a hybrid educational system for engineering experiments. Our hybrid education system provides the learners with interactive learning environment and a new approach for the delivery of engineering experiments.

An Adaptive Decision-Feedback Equalizer Architecture using RB Complex-Number Filter and chip-set design (RB 복소수 필터를 이용한 적응 결정귀환 등화기 구조 및 칩셋 설계)

  • Kim, Ho Ha;An, Byeong Gyu;Sin, Gyeong Uk
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.24 no.12A
    • /
    • pp.2015-2024
    • /
    • 1999
  • Presented in this paper are a new complex-umber filter architecture, which is suitable for an efficient implementation of baseband signal processing of digital communication systems, and a chip-set design of adaptive decision-feedback equalizer (ADFE) employing the proposed structure. The basic concept behind the approach proposed in this paper is to apply redundant binary (RB) arithmetic instead of conventional 2’s complement arithmetic in order to achieve an efficient realization of complex-number multiplication and accumulation. With the proposed way, an N-tap complex-number filter can be realized using 2N RB multipliers and 2N-2 RB adders, and each filter tap has its critical delay of $T_{m.RB}+T_{a.RB}$ (where $T_{m.RB}, T_{a.RB}$are delays of a RB multiplier and a RB adder, respectively), making the filter structure simple, as well as resulting in enhanced speed by means of reduced arithmetic operations. To demonstrate the proposed idea, a prototype ADFE chip-set, FFEM (Feed-Forward Equalizer Module) and DFEM (Decision-Feedback Equalizer Module) that can be cascaded to implement longer filter taps, has been designed. Each module is composed of two complex-number filter taps with their LMS coefficient update circuits, and contains about 26,000 gates. The chip-set was modeled and verified using COSSAP and VHDL, and synthesized using 0.8- μm SOG (Sea-Of-Gate) cell library.

  • PDF

A Low Area and High Efficiency SMPS with a PWM Generator Based on a Pseudo Relaxation-Oscillating Technique (Pseudo Relaxation-Oscillating 기법의 PWM 발생기를 이용한 저면적, 고효율 SMPS)

  • Lim, Ji-Hoon;Wee, Jae-Kyung;Song, Inchae
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.50 no.11
    • /
    • pp.70-77
    • /
    • 2013
  • We suggest a low area and high efficiency switched-mode power supply (SMPS) with a pulse width modulation (PWM) generator based on a pseudo relaxation-oscillating technique. In the proposed circuit, the PWM duty ratio is determined by the voltage slope control of an internal capacitor according to amount of charging current in a PWM generator. Compared to conventional SMPSs, the proposed control method consists of a simple structure without the filter circuits needed for an analog-controlled SMPS or the digital compensator used by a digitally-controlled SMPS. The proposed circuit is able to operate at switching frequency of 1MHz~10MHz, as this frequency can be controlled from the selection of one of the internal capacitors in a PWM generator. The maximum current of the core circuit is 2.7 mA, and the total current of the entire circuit including output buffer driver is 15 mA at 10 MHz switching frequency. The proposed SMPS has a simulated maximum ripple voltage of 7mV. In this paper, to verify the operation of the proposed circuit, we performed simulation using Dongbu Hitek BCD $0.35{\mu}m$ technology and measured the proposed circuit.

A Single-Bit 2nd-Order CIFF Delta-Sigma Modulator for Precision Measurement of Battery Current (배터리 전류의 정밀 측정을 위한 단일 비트 2차 CIFF 구조 델타 시그마 모듈레이터)

  • Bae, Gi-Gyeong;Cheon, Ji-Min
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.13 no.3
    • /
    • pp.184-196
    • /
    • 2020
  • In this paper, a single-bit 2nd-order delta-sigma modulator with the architecture of cascaded-of-integrator feedforward (CIFF) is proposed for precision measurement of current flowing through a secondary cell battery in a battery management system (BMS). The proposed modulator implements two switched capacitor integrators and a single-bit comparator with peripheral circuits such as a non-overlapping clock generator and a bias circuit. The proposed structure is designed to be applied to low-side current sensing method with low common mode input voltage. Using the low-side current measurement method has the advantage of reducing the burden on the circuit design. In addition, the ±30mV input voltage is resolved by the ADC with 15-bit resolution, eliminating the need for an additional programmable gain amplifier (PGA). The proposed a single-bit 2nd-order delta-sigma modulator has been implemented in a 350-nm CMOS process. It achieves 95.46-dB signal-to-noise-and-distortion ratio (SNDR), 96.01-dB spurious-free dynamic range (SFDR), and 15.56-bit effective-number-of-bits (ENOB) with an oversampling ratio (OSR) of 400 for 5-kHz bandwidth. The area and power consumption of the delta-sigma modulator are 670×490 ㎛2 and 414 ㎼, respectively.

A Design of Wireless Sensor Node Using Embedded System (임베디드 시스템을 활용한 무선 센서 노드설계)

  • Cha, Jin-Man;Lee, Young-Ra;Park, Yeon-Sik
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.13 no.3
    • /
    • pp.623-628
    • /
    • 2009
  • The emergence of compact and low-power wireless communication sensors and actuators in the technology supporting the ongoing miniaturization of processing and storage allows for entirely the new kinds of embedded systems. These systems are distributed and deployed in environments where they may have been designed into a particular control method, and are often very dynamic. Collection of devices can communicate to achieve a higher level of coordinated behavior. Wireless sensor nodes deposited in various places provide light, temperature, and activity measurements. Wireless sensor nodes attached to circuits or appliances sense the current or control the usage. Together they form a dynamic and multi-hop routing network connecting each node to more powerful networks and processing resources. Wireless sensor networks are a specific-application and therefore they have to involve both software and hardware. They also use protocols that relate to both applications and the wireless network. Wireless sensor networks are consumer devices supporting multimedia applications such as personal digital assistants, network computers, and mobile communication devices. Wireless sensor networks are becoming an important part of industrial and military applications. The characteristics of modem embedded systems are the capable of communicating adapting the different operating environments. In this paper, We designed and implemented sensor network system which shows through host PC sensing temperature and humidity data transmitted for wireless sensor nodes composed wireless temperature and humidity sensor and designs sensor nodes using embedded system with the intention of studying USN.

Trademark Protection In The Fashion Industry with ICT Issues (패션산업의 상표권 보호 및 ICT 쟁점 - Louboutin 사건, Levi 사건에 대한 분석을 중심으로 -)

  • Lee, Jae-Kyoung
    • Journal of Legislation Research
    • /
    • no.44
    • /
    • pp.185-209
    • /
    • 2013
  • With the broader range of information and communications technology, of which fashion is a foundational medium, to analyze fashion as an information technology in order to better understand the industry's desire for intellectual property protection, popular resistance to such protection, and the most efficacious balance between them in terms of creative expression. It is, therefore to be focused on cultural and historical reasons for the limited degree of intellectual property protection extended in the past to certain categories of human creativity, including fashion design. So, the question of why some tension still exists between creators and consumers of fashion, how information theory can contribute to an explanation for that tension, and what role law can play in its resolution with Louboutin case and Levi case. Consumers and designers alike are better served by promotion of fair competition, lower litigation costs, and the inventive synergy of the fashion industry. Louboutin shows the comfortable, respectful limits of trademark law, while Levi illustrates the dangerous, overreaching deference that a few circuits have granted to famous marks. The Supreme Court could clarify the standard for dilution claims, requiring that a junior mark be "identical or nearly identical" or even "significantly similar" to a senior mark. Courts should need a deference in making dilution determinations and can choose to make this factor quite subjective with the highest degree of similarity.

Design of eFuse OTP IP for Illumination Sensors Using Single Devices (Single Device를 사용한 조도센서용 eFuse OTP IP 설계)

  • Souad, Echikh;Jin, Hongzhou;Kim, DoHoon;Kwon, SoonWoo;Ha, PanBong;Kim, YoungHee
    • Journal of IKEEE
    • /
    • v.26 no.3
    • /
    • pp.422-429
    • /
    • 2022
  • A light sensor chip requires a small capacity eFuse (electrical fuse) OTP (One-Time Programmable) memory IP (Intellectual Property) to trim analog circuits or set initial values of digital registers. In this paper, 128-bit eFuse OTP IP is designed using only 3.3V MV (Medium Voltage) devices without using 1.8V LV (Low-Voltage) logic devices. The eFuse OTP IP designed with 3.3V single MOS devices can reduce a total process cost of three masks which are the gate oxide mask of a 1.8V LV device and the LDD implant masks of NMOS and PMOS. And since the 1.8V voltage regulator circuit is not required, the size of the illuminance sensor chip can be reduced. In addition, in order to reduce the number of package pins of the illumination sensor chip, the VPGM voltage, which is a program voltage, is applied through the VPGM pad during wafer test, and the VDD voltage is applied through the PMOS power switching circuit after packaging, so that the number of package pins can be reduced.

Hardware Approach to Fuzzy Inference―ASIC and RISC―

  • Watanabe, Hiroyuki
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1993.06a
    • /
    • pp.975-976
    • /
    • 1993
  • This talk presents the overview of the author's research and development activities on fuzzy inference hardware. We involved it with two distinct approaches. The first approach is to use application specific integrated circuits (ASIC) technology. The fuzzy inference method is directly implemented in silicon. The second approach, which is in its preliminary stage, is to use more conventional microprocessor architecture. Here, we use a quantitative technique used by designer of reduced instruction set computer (RISC) to modify an architecture of a microprocessor. In the ASIC approach, we implemented the most widely used fuzzy inference mechanism directly on silicon. The mechanism is beaded on a max-min compositional rule of inference, and Mandami's method of fuzzy implication. The two VLSI fuzzy inference chips are designed, fabricated, and fully tested. Both used a full-custom CMOS technology. The second and more claborate chip was designed at the University of North Carolina(U C) in cooperation with MCNC. Both VLSI chips had muliple datapaths for rule digital fuzzy inference chips had multiple datapaths for rule evaluation, and they executed multiple fuzzy if-then rules in parallel. The AT & T chip is the first digital fuzzy inference chip in the world. It ran with a 20 MHz clock cycle and achieved an approximately 80.000 Fuzzy Logical inferences Per Second (FLIPS). It stored and executed 16 fuzzy if-then rules. Since it was designed as a proof of concept prototype chip, it had minimal amount of peripheral logic for system integration. UNC/MCNC chip consists of 688,131 transistors of which 476,160 are used for RAM memory. It ran with a 10 MHz clock cycle. The chip has a 3-staged pipeline and initiates a computation of new inference every 64 cycle. This chip achieved an approximately 160,000 FLIPS. The new architecture have the following important improvements from the AT & T chip: Programmable rule set memory (RAM). On-chip fuzzification operation by a table lookup method. On-chip defuzzification operation by a centroid method. Reconfigurable architecture for processing two rule formats. RAM/datapath redundancy for higher yield It can store and execute 51 if-then rule of the following format: IF A and B and C and D Then Do E, and Then Do F. With this format, the chip takes four inputs and produces two outputs. By software reconfiguration, it can store and execute 102 if-then rules of the following simpler format using the same datapath: IF A and B Then Do E. With this format the chip takes two inputs and produces one outputs. We have built two VME-bus board systems based on this chip for Oak Ridge National Laboratory (ORNL). The board is now installed in a robot at ORNL. Researchers uses this board for experiment in autonomous robot navigation. The Fuzzy Logic system board places the Fuzzy chip into a VMEbus environment. High level C language functions hide the operational details of the board from the applications programme . The programmer treats rule memories and fuzzification function memories as local structures passed as parameters to the C functions. ASIC fuzzy inference hardware is extremely fast, but they are limited in generality. Many aspects of the design are limited or fixed. We have proposed to designing a are limited or fixed. We have proposed to designing a fuzzy information processor as an application specific processor using a quantitative approach. The quantitative approach was developed by RISC designers. In effect, we are interested in evaluating the effectiveness of a specialized RISC processor for fuzzy information processing. As the first step, we measured the possible speed-up of a fuzzy inference program based on if-then rules by an introduction of specialized instructions, i.e., min and max instructions. The minimum and maximum operations are heavily used in fuzzy logic applications as fuzzy intersection and union. We performed measurements using a MIPS R3000 as a base micropro essor. The initial result is encouraging. We can achieve as high as a 2.5 increase in inference speed if the R3000 had min and max instructions. Also, they are useful for speeding up other fuzzy operations such as bounded product and bounded sum. The embedded processor's main task is to control some device or process. It usually runs a single or a embedded processer to create an embedded processor for fuzzy control is very effective. Table I shows the measured speed of the inference by a MIPS R3000 microprocessor, a fictitious MIPS R3000 microprocessor with min and max instructions, and a UNC/MCNC ASIC fuzzy inference chip. The software that used on microprocessors is a simulator of the ASIC chip. The first row is the computation time in seconds of 6000 inferences using 51 rules where each fuzzy set is represented by an array of 64 elements. The second row is the time required to perform a single inference. The last row is the fuzzy logical inferences per second (FLIPS) measured for ach device. There is a large gap in run time between the ASIC and software approaches even if we resort to a specialized fuzzy microprocessor. As for design time and cost, these two approaches represent two extremes. An ASIC approach is extremely expensive. It is, therefore, an important research topic to design a specialized computing architecture for fuzzy applications that falls between these two extremes both in run time and design time/cost. TABLEI INFERENCE TIME BY 51 RULES {{{{Time }}{{MIPS R3000 }}{{ASIC }}{{Regular }}{{With min/mix }}{{6000 inference 1 inference FLIPS }}{{125s 20.8ms 48 }}{{49s 8.2ms 122 }}{{0.0038s 6.4㎲ 156,250 }} }}

  • PDF

A 13b 100MS/s 0.70㎟ 45nm CMOS ADC for IF-Domain Signal Processing Systems (IF 대역 신호처리 시스템 응용을 위한 13비트 100MS/s 0.70㎟ 45nm CMOS ADC)

  • Park, Jun-Sang;An, Tai-Ji;Ahn, Gil-Cho;Lee, Mun-Kyo;Go, Min-Ho;Lee, Seung-Hoon
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.53 no.3
    • /
    • pp.46-55
    • /
    • 2016
  • This work proposes a 13b 100MS/s 45nm CMOS ADC with a high dynamic performance for IF-domain high-speed signal processing systems based on a four-step pipeline architecture to optimize operating specifications. The SHA employs a wideband high-speed sampling network properly to process high-frequency input signals exceeding a sampling frequency. The SHA and MDACs adopt a two-stage amplifier with a gain-boosting technique to obtain the required high DC gain and the wide signal-swing range, while the amplifier and bias circuits use the same unit-size devices repeatedly to minimize device mismatch. Furthermore, a separate analog power supply voltage for on-chip current and voltage references minimizes performance degradation caused by the undesired noise and interference from adjacent functional blocks during high-speed operation. The proposed ADC occupies an active die area of $0.70mm^2$, based on various process-insensitive layout techniques to minimize the physical process imperfection effects. The prototype ADC in a 45nm CMOS demonstrates a measured DNL and INL within 0.77LSB and 1.57LSB, with a maximum SNDR and SFDR of 64.2dB and 78.4dB at 100MS/s, respectively. The ADC is implemented with long-channel devices rather than minimum channel-length devices available in this CMOS technology to process a wide input range of $2.0V_{PP}$ for the required system and to obtain a high dynamic performance at IF-domain input signal bands. The ADC consumes 425.0mW with a single analog voltage of 2.5V and two digital voltages of 2.5V and 1.1V.