• Title/Summary/Keyword: Digital architecture design

Search Result 752, Processing Time 0.024 seconds

Design of a 3.3V 8-bit 200MSPS CMOS Folding/Interpolation ADC (3.3V 8-bit 200MSPS CMOS Folding/Interpolation ADC의 설계)

  • Na, Yu-Sam;Song, Min-Gyu
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.38 no.3
    • /
    • pp.198-204
    • /
    • 2001
  • In this paper, a 3V 8-bit 200MSPS CMOS folding / interpolation A/D Converter is proposed. It employs an efficient architecture whose FR(Folding Rate) is 8, NFB(Number of Folding Block) is 4, and IR (Interpolating Rate) is 8. For the purpose of improved SNDR by to be low input frequency, distributed track and hold circuits are included. In order to obtain a high speed and low power operation, further, a novel dynamic latch and digital encoder based on a novel delay error correction are proposed. The chip has been fabricated with a 0.35${\mu}{\textrm}{m}$ 2-poly 3-metal n-well CMOS technology. The effective chip area is 1070${\mu}{\textrm}{m}$$\times$650${\mu}{\textrm}{m}$ and it dissipates about 230mW at 3.3V power supply. The INL is within $\pm$1LSB and DNL is within $\pm$1LSB, respectively. The SNDR is about 43㏈, when the input frequency is 10MHz at 200MHz clock frequency.

  • PDF

A New Survivor Path Memory Management Method for High-speed Viterbi Decoders (고속 비터비 복호기를 위한 새로운 생존경로 메모리 관리 방법)

  • 김진율;김범진
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.27 no.5C
    • /
    • pp.411-421
    • /
    • 2002
  • In this paper, we present a new survivor path memory management method and a dedicated hardware architecture for the design of high-speed Viterbi decoders in modern digital communication systems. In the proposed method, a novel use of k-starting node number deciding circuits enables to acheive the immediate traceback of the merged survivor path from which we can decode output bits, and results in smaller survivor path memory size and processing delay time than the previously known methods. Also, in the proposed method, the survivor path memory can be constructed with ease using a simple standard dual-ported memory since one read-pointer and one write-pointer, that are updated at the same rate, are required for managing the survivor path: the previously known algorithms require either complex k-ported memory structure or k-times faster read capability than write. With a moderate hardware cost for immediate traceback capability the proposed method is superior to the previously known methods for high-speed Viterbi decoding.

A Stereo Audio DAC with Asymmetric PWM Power Amplifier (비대칭 펄스 폭 변조 파워-앰프를 갖는 스테레오 오디오 디지털-아날로그 변환기)

  • Lee, Yong-Hee;Jun, Young-Hyun;Kong, Bai-Sun
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.45 no.7
    • /
    • pp.44-51
    • /
    • 2008
  • A stereo audio digital-to-analog converter (DAC) with a power amplifier using asymmetric pulse-width modulation (PWM) is presented. To adopt class-D amplifier mainly used in high-power audio appliances for head-phones application, this work analyzes the noise caused by the inter-channel interference during the integration and optimizes the design of the sigma-delta modulator to decrease the performance degradation caused by the noise. The asymmetric PWM is implemented to reduce switching noise and power loss generated from the power amplifier. This proposed architecture is fabricated in 0.13-mm CMOS technology. The proposed audio DAC including the power amplifier with single-ended output achieves a dynamic range (DR) of 95-dB dissipating 4.4-mW.

Design of a Low Power 3V 6-bit 100MSPS CMOS ADC for DBS Receiver (위성방송 수신기용 저전력 3V 6-bit 100MSPS COMS ADC의 설계)

  • Moon, Jae-Jun;Song, Min-Kyu
    • Journal of the Korean Institute of Telematics and Electronics C
    • /
    • v.36C no.12
    • /
    • pp.20-26
    • /
    • 1999
  • A CMOS 6-bit 100MSPS ADC for DBS receiver is designed. The proposed ADC is composed of folding block, latch block, and digital block. The cascode interpolating block and kickback reduced latch are proposed with a high speed architecture. To verify the performance of ADC, simulations are carried out by HSPICE. The ADC achieves a clock frequency of 100MHz with a power dissipation of 40mW for 3 V supply voltage. The active chip area is $1500{\mu}m{\times}1000{\mu}m$with $0.65{\mu}m$ 2-poly 2-metal CMOS process. Further, INL and DNL are within ${\pm}0.6LSB$, ${\pm}0.5LSB$, respectively. SNDR is about 33dB at 10MHz input frequency.

  • PDF

Hardware design of Reed-solomon decoder for DMB mobile terminals (DMB 휴대용 단말기를 위한 Reed-Solomon 복호기의 설계)

  • Ryu Tae-Gyu;Jeong Yong-Jin
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.43 no.4 s.346
    • /
    • pp.38-48
    • /
    • 2006
  • In this paper, we developed a hardware architecture of Reed-Solomon RS(255,239) decoder for the DMB mobile terminals. The DMB provides multimedia broadcasting service to mobile terminals, hence it should have small dimension for low power and short decoding delay for real-time processing. We modified Euclid algorithm to apply it to the key equation solving which is the most complicated part of the RS decoding. We also designed a small finite field divider to avoid the use of large Inverse-ROM table, and it consumed 17 clocks. After synthesis with Synopsis on Samsung STD130 $0.18{\mu}m$ Standard Cell library, the Euclid block had 30,228 gates and consumed 288 clocks, which gave the 25% reduced area compared to other existing designs. The size of the entire RS decoder was about 45,000 gates.

Design of an Algorithm for the Validation of SCL in Digital Substations

  • Jang, B.T.;Alidu, A.;Kim, N.D.
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.3 no.2
    • /
    • pp.89-97
    • /
    • 2017
  • The substation is a critical node in the power network where power is transformed in the power generation, transmission and distribution system. The IEC 61850 is a global standard which proposes efficient substation automation by defining interoperable communication and data modelling techniques. In order to achieve this level of interoperability and automation, the IEC 61850 (Part 6) defines System Configuration description Language (SCL). The SCL is an XML based file format for defining the abstract model of primary and secondary substation equipment, communications systems and also the relationship between them. It enables the interoperable exchange of data during substation engineering by standardizing the description of applications at different stages of the engineering process. To achieve the seamless interoperability, multi-vendor devices are required to adhere completely to the IEC 61850. This paper proposes an efficient algorithm required for verifying the interoperability of multi-vendor devices by checking the adherence of the SCL file to specifications of the standard. Our proposed SCL validation algorithm consists of schema validation and other functionalities including information model validation using UML data model, the Vendor Defined Extension model validation, the User Defined Rule validation and the IED Engineering Table (IET) consistency validation. It also integrates the standard UCAIUG (Utility Communication Architecture International Users Group) Procedure validation for quality assurance testing. Our proposed algorithm is not only flexible and efficient in terms of ensuring interoperable functionality of tested devices, it is also convenient for use by system integrators and test engineers.

A Design and Implementation of a Wireless Audio Sharing (WASH) System (Wireless Audio Sharing (WASH) 시스템 설계 및 구현)

  • Son, Ji-Yeon;Kim, Myung-Gyu;Yang, Il-Sik;Park, Jun-Seok
    • Journal of KIISE:Information Networking
    • /
    • v.33 no.2
    • /
    • pp.139-148
    • /
    • 2006
  • Recently with the advancement of local wireless communication technologies, digital trends of audio contents and devices are paving the way for new experiences to network-based audio streaming services. In this paper, we present the Wireless Audio Sharing (WASH) technology over Bluetooth and Wireless Local Area Network (WLAN). WASH system provides an audio sharing mechanism over multiple users and also provides stereo audio streaming between Bluetooth-enabled devices and Universal Plug and Play (UPnP) media devices connected to wired/wireless LANs. To achieve these, we extended the Bluetooth audio distribution profile and combined the extended profile with the UPnP AV architecture. With the implementation of this WASH technology, we show some experimental results of the stereo audio streaming in a real environment.

Design and Implementation of the Interoperability method for the Remote OSGi services (원격 OSGi 서비스의 상호운용 기술 설계 및 구현)

  • Kim, Eun-Hoe;Yun, Ki-Hyun;Choi, Jae-Young
    • Journal of Internet Computing and Services
    • /
    • v.12 no.1
    • /
    • pp.11-25
    • /
    • 2011
  • In ubiquitous computing environment, OSGi has applied to many areas such as digital mobile phones, vehicles, telematics, embedded appliances, residential gateways, industrial computers, desktop PCs, and high-end servers including mainframes. Therefore, interoperability is required for remote OSGi services which are built on various devices. In this paper, we proposed a method which was able to interoperate remote OSGi services using RMI paradigm. RMI is a representative middleware technology in distributed computing environment. The suggested method is based on the standard OSGi technology. It is possible to provide remote OSGi service registration, finding, and binding methods which were suitable for the OSGi service-oriented architecture. We also provided reliability of the dynamic remote OSGi services by maintaining consistent properties of them, and we could provide location transparency of the remote OSGi services by generating proxy bundles and proxy services dynamically.

A Variable-Length FFT/IFFT Processor for Multi-standard OFDM Systems (다중표준 OFDM 시스템용 가변길이 FFT/IFFT 프로세서)

  • Yeem, Chang-Wan;Shin, Kyung-Wook
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.35 no.2A
    • /
    • pp.209-215
    • /
    • 2010
  • This paper describes a design of variable-length FFT/IFFT processor (VL_FCore) for OFDM-based multi-standard communication systems. The VL_FCore adopts in-place single-memory architecture, and uses a hybrid structure of radix-4 and radix-2 DIF algorithms to accommodate various FFT lengths in the range of $N=64{\times}2^k\;(0{\leq}k{\leq}7)$. To achieve both memory size reduction and the improved SQNR, a two-step conditional scaling technique is devised, which conditionally scales the intermediate results of each computational stage. The performance analysis results show that the average SQNR's of 64~8,192-point FFT's are over 60-dB. The VL_FCore synthesized with a $0.35-{\mu}m$ CMOS cell library has 23,000 gates and 32 Kbytes memory, and it can operate with 75-MHz@3.3-V clock. The 64-point and 8,192-point FFT's can be computed in $2.25-{\mu}s$ and $762.7-{\mu}s$, respectively, thus it satisfies the specifications of various OFDM-based systems.

A New Complex-Number Multiplication Algorithm using Radix-4 Booth Recoding and RB Arithmetic, and a 10-bit CMAC Core Design (Radix-4 Booth Recoding과 RB 연산을 이용한 새로운 복소수 승산 알고리듬 및 10-bit CMAC코어 설계)

  • 김호하;신경욱
    • Journal of the Korean Institute of Telematics and Electronics C
    • /
    • v.35C no.9
    • /
    • pp.11-20
    • /
    • 1998
  • High-speed complex-number arithmetic units are essential to baseband signal processing of modern digital communication systems such as channel equalization, timing recovery, modulation and demodulation. In this paper, a new complex-number multiplication algorithm is proposed, which is based on redundant binary (RB) arithmetic combined with radix-4 Booth recoding scheme. The proposed algorithm reduces the number of partial product by one-half as compared with the conventional direct method using real-number multipliers and adders. It also leads to a highly parallel architecture and simplified circuit, resulting in high-speed operation and low power dissipation. To demonstrate the proposed algorithm, a prototype complex-number multiplier-accumulator (CMAC) core with 10-bit operands has been designed using 0.8-$\mu\textrm{m}$ N-Well CMOS technology. The designed CMAC core contains about 18,000 transistors on the area of about 1.60 ${\times}$ 1.93 $\textrm{mm}^2$. The functional and speed test results show that it can operate with 120-MHz clock at V$\sub$DD/=3.3-V, and its power consumption is given to about 63-mW.

  • PDF