• 제목/요약/키워드: Digital Zoom

Search Result 70, Processing Time 0.024 seconds

A Beamforming-Based Video-Zoom Driven Audio-Zoom Algorithm for Portable Digital Imaging Devices

  • Park, Nam In;Kim, Seon Man;Kim, Hong Kook;Kim, Myeong Bo;Kim, Sang Ryong
    • IEIE Transactions on Smart Processing and Computing
    • /
    • v.2 no.1
    • /
    • pp.11-19
    • /
    • 2013
  • A video-zoom driven audio-zoom algorithm is proposed to provide audio zooming effects according to the degree of video-zoom. The proposed algorithm is designed based on a super-directive beamformer operating with a 4-channel microphone array in conjunction with a soft masking process that uses the phase differences between microphones. The audio-zoom processed signal is obtained by multiplying the audio gain derived from the video-zoom level by the masked signal. The proposed algorithm is then implemented on a portable digital imaging device with a clock speed of 600 MHz after different levels of optimization, such as algorithmic level, C-code and memory optimization. As a result, the processing time of the proposed audio-zoom algorithm occupies 14.6% or less of the clock speed of the device. The performance evaluation conducted in a semi-anechoic chamber shows that the signals from the front direction can be amplified by approximately 10 dB compared to the other directions.

  • PDF

Experimental Analysis on Barrel Zoom Module of Digital Camera for Noise Source Identification and Noise Reduction (실험적 방법을 이용한 디지털 카메라 경통 줌 모듈의 소음원 규명 및 저소음화)

  • Kwak, Hyung-Taek;Jeong, Jae-Eun;Jeong, Un-Chang;Lee, You-Yub;Oh, Jae-Eung
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.21 no.11
    • /
    • pp.1074-1083
    • /
    • 2011
  • Noise of digital camera has been noticeable to its users. Particularly, noise of a barrel assembly module in zoom in/zoom out operation is recorded while taking a video. Reduction of barrel noise becomes crucial but there are not many studies on noise of digital camera due to its short history of use. In this study, experiment-based analyses are implemented to identify sources of noise and vibration because of complexity and compactness of the barrel system. Output noise is acquired in various operation conditions using synchronization for spectral analysis. Noise sources of a barrel assembly in zoom operating are first identified by the comparison with gear frequency analysis and then correlation analysis between noise and vibration is applied to confirm the generation path of noise. Analysis on noise transfer characteristic of zoom module is also carried out in order to identify the most contributing components. One of possible countermeasures of noise in zoom operating is investigated by an experimental approach.

Optical Design and Fabrication of a Large Telephoto Zoom Lens with Fixed f/2.8 and Light Autofocus Lens

  • Ryu, Jae Myung;Gang, Geon Mo;Lee, Hyuck Ki;Lee, Ki Woo;Heu, Min;Jo, Jae Heung
    • Journal of the Optical Society of Korea
    • /
    • v.19 no.6
    • /
    • pp.629-637
    • /
    • 2015
  • Compact system cameras (CSCs) are commonly used nowadays and feature enhanced video functions and thin yet light interchangeable lenses. They differ from digital single-lens reflex (DSLR) cameras in their lack of mirror boxes. CSCs, however, have autofocus (AF) speeds lower than those of conventional DSLRs, requiring weight reduction of their AF groups. To ensure the marketability of large telephoto zoom lenses with fixed f/2.8 regardless of field angle variation, in particular, light weight AF groups are essential. In this paper, we introduce a paraxial optical design method and present a new, large, telephoto zoom lens with f/2.8 regardless of the field angle variation, plus a lightweight AF group consisting of only one lens. Using the basic paraxial optical design and optimization methods, we fabricated a new and lighter zoom lens system, including a single-lens, lightweight AF group with almost the same performance.

Numerical Calculation Method for Paraxial Zoom Loci of Complicated Zoom Lenses with Infinite Object Distance by Using Gaussian Bracket Method (가우스 괄호법을 이용한 무한 물점을 갖는 복잡한 줌 렌즈의 수치해석적인 근축광선 줌 궤적 추적법)

  • Yoo, Nam-Jun;Kim, Won-Seob;Jo, Jae-Heung;Ryu, Jae-Myung;Lee, Hae-Jin;Kang, Geon-Mo
    • Korean Journal of Optics and Photonics
    • /
    • v.18 no.6
    • /
    • pp.410-420
    • /
    • 2007
  • We theoretically derive the set of utilizable paraxial zoom locus equations for all complicated zoom lens systems with infinite object distance, such as a camera zoom lens, by using the Gaussian bracket method and the matrix representation of paraxial ray tracing. And we make the zoom locus program according to these equations in Visual Basic. Since we have applied the paraxial ray tracing equations into Gaussian bracket representation, the resultant program systematically simplifies various constraints of the zoom loci of various N group types. Consequently, the solutions of this method can be consistently used in all types of zoom lens in the step of initial design about zoom loci. Finally, in order to verify the usefulness of this method, we show that one example among 4 groups and that among 5 groups, which are very complex zoom lens systems, can be rapidly and with versatility traced through various interpolations by using this program.

Comparing Zoom's Security Analysis and Security Update Results (줌의 보안 취약점 분석과 보안 업데이트 결과 비교)

  • Kim, Kyuhyeong;Choi, Younsung
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.16 no.4
    • /
    • pp.55-65
    • /
    • 2020
  • As corona began to spread around the world, it had such a big impact on many people's lives that the word "Untact Culture" was born. Among them, non-face-to-face meetings naturally became a daily routine as educational institutions and many domestic and foreign companies used video conferencing service platforms. Among many video conferencing service platforms, Zoom, the company with the largest number of downloads, caused many security issues and caused many concerns about Zoom's security. In this paper, Zoom's security problems and vulnerabilities were classified into five categories, and Zoom's latest update to solve those problems and the 90-day security planning project were compared and analyzed. And the problem was solved and classified as unresolved. Three of the five parts have been resolved but are still described as how they should be resolved and improved in the future for the two remaining parts.

Focus Adjustment Method with Statistical Analysis for an Interchangeable Zoom Lens with Symmetric Error Factors (대칭성 공차를 갖는 교환렌즈용 줌 렌즈의 핀트 조정법과 통계적 해석)

  • Ryu, J.M.;Jo, J.H.;Kang, G.M.;Lee, H.J.;Yoneyama, Suji
    • Korean Journal of Optics and Photonics
    • /
    • v.22 no.5
    • /
    • pp.230-238
    • /
    • 2011
  • There are many types of interchangeable zoom lens in the digital single lens reflex camera and the compact digital still camera system in order to meet various specifications such as the field angle. Thus special cases for which the focus adjustment using only an auto-focus group is not available in the focal point correction (that is, the focus adjustment) of both wide and tele-zoom positions are sometimes generated. In order to make each BFL(back focal length, BFL) coincide at wide and tele-zoom positions with each designed BFL, focus adjustment processes must be performed at least in these two points within the zoom lens system. In this paper, we propose a method of focus adjustment by using the concept of focus sensitivity, and we calculate a limit on focus adjustment distance by means of statistical analysis.

General Numerical Calculation Method for Paraxial Zoom Loci of Zoom Lenses with Finite Object Distance by Using Gaussian Bracket Method (가우스 괄호법을 이용한 유한 물점을 갖는 줌 렌즈에 대한 일반적인 수치해석적 근축광선 줌 궤적 추적)

  • Lee, Do-Kyung;Yoo, Nam-Jun;Jo, Jae-Heung;Ryu, Jae-Myung;Kang, Geon-Mo;Lee, Hae-Jin
    • Korean Journal of Optics and Photonics
    • /
    • v.20 no.3
    • /
    • pp.156-165
    • /
    • 2009
  • We theoretically derive the set of general paraxial zoom locus equations for all zoom lens systems with finite object distance, including the infinite object distance case, by using the Gaussian bracket method and matrix representation of paraxial ray tracing. We make the zoom locus program by means of a numerical calculation method according to these equations in Visual Basic Language. Consequently, the solutions of this method can be consistently and flexibly used in all types of zoom lens in the step of initial design about zoom loci. Finally, in order to verify the justification and usefulness of this method, we show that two examples, such as $M_{4a}$ and $M_{4h}$ types of 4 groups, and one example, $M_{5n}$ type of 5 groups, which are very complicated zoom lens systems, can be rapidly and diversely traced through various interpolations by using this program.

The Change of Interior Orientation Parameters in Zoom Lens Digital Cameras (줌렌즈 디지털 카메라의 내부표정요소 변화)

  • Kim, Gi-Hong;Jeong, Soo;Kim, Baek-Seok
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.28 no.1
    • /
    • pp.93-98
    • /
    • 2010
  • Recently, as digital photogrammetry bas been widely used in various fields including construction, it is also being applied to several industries. It is essential for interior orientation to determine accurate focal length of camera, lens distortion, location of principal point in order to apply high quality digital camera to digital photogrammetry. In this study we conducted interior orientation for zoom lens camera with regular time and zoom factors and analyzed change of radial distortion parameters and location of principal point to evaluate interior orientation stability. As a result, radial distortion parameters($k_1,k_2$) are converged into zero by increasing zoom factors. There are correlation between the change of location of point and zoom factors. The displacement of $x_p$, $y_p$ increase as zoom factors rise high.

Numerical Calculation for Autofocus of Zoom Lenses by Using Gaussian Brackets (가우스 괄호법을 이용한 줌 렌즈의 조출량에 대한 수치해석 계산법)

  • Jo, Jae-Heung;Lee, Do-Kyung;Lee, Sang-On;Ryu, Jae-Myung;Kang, Geon-Mo;Lee, Hae-Jin
    • Korean Journal of Optics and Photonics
    • /
    • v.20 no.3
    • /
    • pp.166-174
    • /
    • 2009
  • When the object distance of a zoom lens with finite object distances is varied, we can fix the image at a fixed image plane by moving only one zoom lens group (autofocus group) without moving all zoom lens groups for the autofocus. We theoretically formulated and numerically calculated the moving distances of the autofocus group by using Gaussian brackets and a paraxial ray tracing method. The solutions of this method can be consistently and flexibly used in the initial design for the moving distance of autofocus group within these zoom loci in all types of zoom lens. Finally, in order to verify the usefulness of this method, we show that the moving distance of an autofocus group can be rapidly and diversely obtained in one example of $M_{5n}$ zoom lens type.

Zoom lens design for compact digital camera using lens modules (렌즈모듈을 이용한 컴팩트 디지털 카메라용 줌 렌즈 설계)

  • Park, Sung-Chan;Lee, Sang-Hun
    • Korean Journal of Optics and Photonics
    • /
    • v.16 no.1
    • /
    • pp.34-42
    • /
    • 2005
  • This paper presents the optimum initial design containing the first and third order properties of the three-group zoom system using lens modules, and the real lens design of the system. The optimum initial design with focal length range of 4.3 mm to 8.6 mm is derived by assigning appropriate first and third order quantities to each module along with the specific constraints required for the system. An initial real lens selected for each group has been designed to match its focal length and the first orders into those of the each lens modules, and then combined to establish an actual zoom system by adjusting the air space between the groups at all zoom positions. The combination of the separately designed groups results in a system which satisfies the first order properties of the zoom system composed of the original lens modules. As a result, by residual aberration correction, we could obtain a zoom system useful in compact digital zoom cameras and mobile phone cameras employing the rear focus method.