• 제목/요약/키워드: Digital Topographic data

Search Result 271, Processing Time 0.027 seconds

A new method for automatic areal feature matching based on shape similarity using CRITIC method (CRITIC 방법을 이용한 형상유사도 기반의 면 객체 자동매칭 방법)

  • Kim, Ji-Young;Huh, Yong;Kim, Doe-Sung;Yu, Ki-Yun
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.29 no.2
    • /
    • pp.113-121
    • /
    • 2011
  • In this paper, we proposed the method automatically to match areal feature based on similarity using spatial information. For this, we extracted candidate matching pairs intersected between two different spatial datasets, and then measured a shape similarity, which is calculated by an weight sum method of each matching criterion automatically derived from CRITIC method. In this time, matching pairs were selected when similarity is more than a threshold determined by outliers detection of adjusted boxplot from training data. After applying this method to two distinct spatial datasets: a digital topographic map and street-name address base map, we conformed that buildings were matched, that shape is similar and a large area is overlaid in visual evaluation, and F-Measure is highly 0.932 in statistical evaluation.

Accuracy Evaluation of DEM generated from Satellite Images Using Automated Geo-positioning Approach

  • Oh, Kwan-Young;Jung, Hyung-Sup;Lee, Moung-Jin
    • Korean Journal of Remote Sensing
    • /
    • v.33 no.1
    • /
    • pp.69-77
    • /
    • 2017
  • S The need for an automated geo-positioning approach for near real-time results and to boost cost-effectiveness has become increasingly urgent. Following this trend, a new approach to automatically compensate for the bias of the rational function model (RFM) was proposed. The core idea of this approach is to remove the bias of RFM only using tie points, which are corrected by matching with the digital elevation model (DEM) without any additional ground control points (GCPs). However, there has to be a additional evaluation according to the quality of DEM because DEM is used as a core element in this approach. To address this issue, this paper compared the quality effects of DEM in the conduct of the this approach using the Shuttle Radar Topographic Mission (SRTM) DEM with the spatial resolution of 90m. and the National Geographic Information Institute (NGII) DEM with the spatial resolution of 5m. One KOMPSAT-2 stereo-pair image acquired at Busan, Korea was used as experimental data. The accuracy was compared to 29 check points acquired by GPS surveying. After bias-compensation using the two DEMs, the Root Mean Square (RMS) errors were less than 6 m in all coordinate components. When SRTM DEM was used, the RMSE vector was about 11.2m. On the other hand, when NGII DEM was used, the RMSE vector was about 7.8 m. The experimental results showed that automated geo-positioning approach can be accomplished more effectively by using NGII DEM with higher resolution than SRTM DEM.

A Study on a GIS based Updating Methodology of Landcover Maps for the Enhancement of Utilization in the Total Maximum Daily Loads (TMDL에서의 토지피복지도 활용 제고를 위한 GIS기반 현행화 방법 연구)

  • Kwak, Geun Ho;Kim, Kye Hyun;Lee, Chol Young;Oh, Seong Kwang
    • Journal of Korean Society on Water Environment
    • /
    • v.30 no.3
    • /
    • pp.340-350
    • /
    • 2014
  • Recently, TMDL has been implemented to estimate the amount of pollutant loads and to establish proper mitigation strategy to decrease the pollutant loads by the Ministry of Environment. To estimate the amount of pollutant loads with reasonable accuracy, securing landcover map with periodically updating is essential. However, in reality, due to the technical and financial difficulties, the landcover map has not been updated annually. Hence, this study mainly aims to suggest an effective GIS-based updating method in order to promote utilization of landcover map in the estimation of pollutant loads. Bupyeong-gu at the City of Incheon with the total area of $31.98km^2$ was chosen for this study and spatial data including digital topographic maps, ortho aerial photo, and satellite images were collected and utilized. A total of 7,235 feature entities were newly produced through the updating process of five steps and it was revealed that the classification of landcover with the total area of $3.34km^2$ was to be changed. The validity and feasibility of the suggested method were proved with the accuracy of 97.9% from the field verification. Further study needs to be made for devising more automated method to update landcover map to facilitate TMDL for individual local governments.

The Evaluation of on Land Cover Classification using Hyperspectral Imagery (초분광 영상을 이용한 토지피복 분류 평가)

  • Lee, Geun-Sang;Lee, Kang-Cheol;Go, Sin-Young;Choi, Yun-Woong;Cho, Gi-Sung
    • Journal of Cadastre & Land InformatiX
    • /
    • v.44 no.2
    • /
    • pp.103-112
    • /
    • 2014
  • The objective of this study is to suggest the possibility on land cover classification using hyperspectal imagery on area which includes lands and waters. After atmospheric correction as a preprocessing work was conducted on hyperspectral imagery acquired by airborne hyperspectral sensor CASI-1500, the effect of atmospheric correction to a few land cover class in before and after atmospheric correction was compared and analyzed. As the result of accuracy of land cover classification by highspectral imagery using reference data as airphoto and digital topographic map, maximum likelihood method represented overall accuracy as 67.0% and minimum distance method showed overall accuracy as 52.4%. Also product accuracy of land cover classification on road, dry field and green house, but that on river, forest, grassland showed low because the area of those was composed of complex object. Therefore, the study needs to select optimal band to classify specific object and to construct spectral library considering spectral characteristics of specific object.

Database Enhancement for Development of Open-pit Mine Monitoring System in Open Source Environments (오픈 소스 환경의 노천광산 모니터링시스템 개발을 위한 데이터베이스 고도화 방안)

  • Kim, Se-Yul;Yu, Ji-Ho;Yu, Young-Geol;Lee, Hyun-Jik
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.34 no.1
    • /
    • pp.21-32
    • /
    • 2016
  • Open-pit mines are the critical infrastructure for acquiring natural resources. Since it could be endangered by environmental and safety problems during operations, continuous monitoring is required for this type of mine. However, the domestic level management and accumulation of present state data of the topographical alteration are incurred by the development and restoration of open-pit mines relying on digital topographic maps and site surveys. Because of it, other than an expert cannot be viewed easily examines those changes information of open-pit mines in the domestic level. If the efficient management and public access of the open-pit mine is targeted, it is easy to build a web-based three-dimensional monitoring system, utilized in the space information software of open source. Therefore, we purposed on developing an open-pit mine monitoring system to support the development and restoration of the ecology-friendly environment, which could be easily monitored by the general public for those changes within terrain and environments due to operations of the mine.

Analysis of Time Series Changes in the Surrounding Environment of Rural Local Resources Using Aerial Photography and UAV - Focousing on Gyeolseong-myeon, Hongseong-gun - (항공사진과 UAV를 이용한 농촌지역자원 주변환경의 시계열 변화 분석 - 충청남도 홍성군 결성면을 중심으로 -)

  • An, Phil-Gyun;Eom, Seong-Jun;Kim, Yong-Gyun;Cho, Han-Sol;Kim, Sang-Bum
    • Journal of Korean Society of Rural Planning
    • /
    • v.27 no.4
    • /
    • pp.55-70
    • /
    • 2021
  • In this study, in the field of remote sensing, where the scope of application is rapidly expanding to fields such as land monitoring, disaster prediction, facility safety inspection, and maintenance of cultural properties, monitoring of rural space and surrounding environment using UAV is utilized. It was carried out to verify the possibility, and the following main results were derived. First, the aerial image taken with an unmanned aerial vehicle had a much higher image size and spatial resolution than the aerial image provided by the National Geographic Information Service. It was suitable for analysis due to its high accuracy. Second, the more the number of photographed photos and the more complex the terrain features, the more the point cloud included in the aerial image taken with the UAV was extracted. As the amount of point cloud increases, accurate 3D mapping is possible, For accurate 3D mapping, it is judged that a point cloud acquisition method for difficult-to-photograph parts in the air is required. Third, 3D mapping technology using point cloud is effective for monitoring rural space and rural resources because it enables observation and comparison of parts that cannot be read from general aerial images. Fourth, the digital elevation model(DEM) produced with aerial image taken with an UAV can visually express the altitude and shape of the topography of the study site, so it can be used as data to predict the effects of topographical changes due to changes in rural space. Therefore, it is possible to utilize various results using the data included in the aerial image taken by the UAV. In this study, the superiority of images acquired by UAV was verified by comparison with existing images, and the effect of 3D mapping on rural space monitoring was visually analyzed. If various types of spatial data such as GIS analysis and topographic map production are collected and utilized using data that can be acquired by unmanned aerial vehicles, it is expected to be used as basic data for rural planning to maintain and preserve the rural environment.

Distribution of Major Plant Communities Based on the Climatic Conditions and Topographic Features in South Korea (남한의 기후와 지형적 특성에 근거한 주요 식물군락의 분포)

  • Yang, Keum-Chul;Shim, Jae-Kuk
    • Korean Journal of Environmental Biology
    • /
    • v.25 no.2
    • /
    • pp.168-177
    • /
    • 2007
  • By using DEM and digital actual vegetation map with MGE GIS software program, topographic features (altitude, slope, latitude, etc.) quantitatively were analysed and their data integrated as the index of climatic conditions (WI, CI, air temperature, etc.) in South Korea. Warmth Index (WI) decreases $5.27^{\circ}C{\cdot}month$ with latitudinal $1^{\circ} degree, and $3.41^{\circ}C{\cdot}month$ with attitudinal 100 m increase. The relationship between CI and WI values is expressed as a linear regression, $WI=116.01+0.96{\times}CI,\;R^2=0.996$. The distributional peaks of different plant communities along Warmth Index gradient showed the sequence of Abies nephrolepis, Taxus cuspidata, Abies koreana, Quercus mongolica, Carpinus laxiflora, Q. dentata, C. tschonoskii, Q. serrate, Pinus densiflora, Q. aliena, Q. variabilis, Q. acutissima, P. thunbergii, Q. acute, Castanopsis cuspidata var. sieboldii, Camellia japonica, Machilus thunbergii community from lower to higher values. The Quercus mongolica forest occurred frequently on E-NW and SE slope aspect within WI $70{\sim}80^{\circ}C{\cdot}month$ optimal range at mesic sites, NW and SE slope than xeric sites S and SW slope. The Q. serrata forest showed the most distributional frequency in NW and W slope aspect within WI $90{\sim}100^{\circ}C{\cdot}month$ range, Q. variabilis and Q. acutissima forest showed the high frequency of distribution in SE slope in WI $95{\sim}100^{\circ}C{\cdot}month$ range. By the slope gradient analysis, five groups were found: 1. Abies nephrolepis, Machilus thunbergii, 2. Taxus cuspidata, Abies koreana, Quercus mongolica, Q. dentata, Q. serrata, Q. variabilis, Castanopsis cuspidata var. sieboldii 3. Pinus densiflora, Q. aliena, Q. acutissima, P. thunbergii, Q. acuta 4. Carpinus laxiflora, Camellia japonica 5. C. tschonoskii from steep slope to gentle slope sequence.

Large-Scale Slope Stability Analysis Using Climate Change Scenario (1): Methodologies (기후변화 시나리오를 이용한 광역 사면안정 해석(1): 방법론)

  • Choi, Byoung-Seub;Oh, Sung-Ryul;Lee, Kun-Hyuk;Lee, Gi-Ha;Kwon, Hyun-Han
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.16 no.3
    • /
    • pp.193-210
    • /
    • 2013
  • This study aims to assess the slope stability variation of Jeollabuk-do drainage areas by RCM model outputs based on A1B climate change scenario and infinite slope stability model based on the specific catchment area concept. For this objective, we downscaled RCM data in time and space: from watershed scale to rain gauge scale in space and from monthly data to daily data in time and also developed the GIS-based infinite slope stability model based on the concept of specific catchment area to calculate spatially-distributed wetness index. For model parameterization, topographic, geologic, forestry digital map were used and model parameters were set up in format of grid cells($90m{\times}90m$). Finally, we applied the future daily rainfall data to the infinite slope stability model and then assess slope stability variation under the climate change scenario. This research consists of two papers: the first paper focuses on the methodologies of climate change scenario preparation and infinite slope stability model development.

Automated Areal Feature Matching in Different Spatial Data-sets (이종의 공간 데이터 셋의 면 객체 자동 매칭 방법)

  • Kim, Ji Young;Lee, Jae Bin
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.24 no.1
    • /
    • pp.89-98
    • /
    • 2016
  • In this paper, we proposed an automated areal feature matching method based on geometric similarity without user intervention and is applied into areal features of many-to-many relation, for confusion of spatial data-sets of different scale and updating cycle. Firstly, areal feature(node) that a value of inclusion function is more than 0.4 was connected as an edge in adjacency matrix and candidate corresponding areal features included many-to-many relation was identified by multiplication of adjacency matrix. For geometrical matching, these multiple candidates corresponding areal features were transformed into an aggregated polygon as a convex hull generated by a curve-fitting algorithm. Secondly, we defined matching criteria to measure geometrical quality, and these criteria were changed into normalized values, similarity, by similarity function. Next, shape similarity is defined as a weighted linear combination of these similarities and weights which are calculated by Criteria Importance Through Intercriteria Correlation(CRITIC) method. Finally, in training data, we identified Equal Error Rate(EER) which is trade-off value in a plot of precision versus recall for all threshold values(PR curve) as a threshold and decided if these candidate pairs are corresponding pairs or not. To the result of applying the proposed method in a digital topographic map and a base map of address system(KAIS), we confirmed that some many-to-many areal features were mis-detected in visual evaluation and precision, recall and F-Measure was highly 0.951, 0.906, 0.928, respectively in statistical evaluation. These means that accuracy of the automated matching between different spatial data-sets by the proposed method is highly. However, we should do a research on an inclusion function and a detail matching criterion to exactly quantify many-to-many areal features in future.

The Application of GIS for the Prediction of Landslide-Potential Areas (산사태의 발생가능지 예측을 위한 GIS의 적용)

  • Lee, Jin-Duk;Yeon, Sang-Ho;Kim, Sung-Gil;Lee, Ho-Chan
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.5 no.1
    • /
    • pp.38-47
    • /
    • 2002
  • This paper demonstrates a regional analysis of landslide occurrence potential by applying geographic information system to the Kumi City selected as a pilot study area. The estimate criteria related to natural and humane environmental factors which affect landslides were first established. A slope map and a aspect map were extracted from DEM, which was generated from the contour layers of digital topographic maps, and a NDVI vegetation map and a land cover map were obtained through satellite image processing. After the spatial database was constructed, indexes of landslide occurrence potential were computed and then a few landslide-potential areas were extracted by an overlay method. It was ascertained that there are high landslide-potential at areas of about 30% incline, aspects including either south or east at least, adjacent to water areas or pointed end of the water system, in or near fault zones, covered with medium vegetable. For more synthetic and accurate analysis, soil data, forest data, underground water level data, meteorological data and so on should be added to the spatial database.

  • PDF