Browse > Article

Distribution of Major Plant Communities Based on the Climatic Conditions and Topographic Features in South Korea  

Yang, Keum-Chul (Division of Civil & Environmental Engineering, Kongju National University)
Shim, Jae-Kuk (Department of Life Science, Chung-Ang University)
Publication Information
Korean Journal of Environmental Biology / v.25, no.2, 2007 , pp. 168-177 More about this Journal
Abstract
By using DEM and digital actual vegetation map with MGE GIS software program, topographic features (altitude, slope, latitude, etc.) quantitatively were analysed and their data integrated as the index of climatic conditions (WI, CI, air temperature, etc.) in South Korea. Warmth Index (WI) decreases $5.27^{\circ}C{\cdot}month$ with latitudinal $1^{\circ} degree, and $3.41^{\circ}C{\cdot}month$ with attitudinal 100 m increase. The relationship between CI and WI values is expressed as a linear regression, $WI=116.01+0.96{\times}CI,\;R^2=0.996$. The distributional peaks of different plant communities along Warmth Index gradient showed the sequence of Abies nephrolepis, Taxus cuspidata, Abies koreana, Quercus mongolica, Carpinus laxiflora, Q. dentata, C. tschonoskii, Q. serrate, Pinus densiflora, Q. aliena, Q. variabilis, Q. acutissima, P. thunbergii, Q. acute, Castanopsis cuspidata var. sieboldii, Camellia japonica, Machilus thunbergii community from lower to higher values. The Quercus mongolica forest occurred frequently on E-NW and SE slope aspect within WI $70{\sim}80^{\circ}C{\cdot}month$ optimal range at mesic sites, NW and SE slope than xeric sites S and SW slope. The Q. serrata forest showed the most distributional frequency in NW and W slope aspect within WI $90{\sim}100^{\circ}C{\cdot}month$ range, Q. variabilis and Q. acutissima forest showed the high frequency of distribution in SE slope in WI $95{\sim}100^{\circ}C{\cdot}month$ range. By the slope gradient analysis, five groups were found: 1. Abies nephrolepis, Machilus thunbergii, 2. Taxus cuspidata, Abies koreana, Quercus mongolica, Q. dentata, Q. serrata, Q. variabilis, Castanopsis cuspidata var. sieboldii 3. Pinus densiflora, Q. aliena, Q. acutissima, P. thunbergii, Q. acuta 4. Carpinus laxiflora, Camellia japonica 5. C. tschonoskii from steep slope to gentle slope sequence.
Keywords
GIS program; climatic conditions; topographic features; Quercus mongolica;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 정태현, 이우철. 1965. 한국삼림식물대 및 적지적수론. 성대논문집 제10편. pp. 329-435
2 Whittaker RH. 1967. Gradient analysis of vegetation. Biol. Rev. 49:207-264
3 Yang KC and JK Shim. 2005. Classification of Biochores in Korean J. Eviron. Biol. 23:215-220   과학기술학회마을
4 Yim KB. 1968. Jorimhak Wonron (Principles of silviculture). Hyangmunsa, Seoul. (in Korean)
5 Cibula WG and MO Nyquist. 1987. Use of topographic and c1imatological models in a geographical data base to improve Landsat MSS classification for Olympic National Park. Photogram. Eng. Remote Sens. 53:67-75
6 Yim YJ. 1977. Distribution of forest vegetation and climate in the Korean Peninsula. III. Distribution of tree species along the thermal gradient. Jap. J. Ecol. 27:177-189
7 Frank TD and SA Isard. 1986. Alpine vegetation classification using high resolution aerial imagery and topoclimatic index values. Photogram. Eng. Remote Sens. 52:381-388
8 김철민. 1991. Landsat TM데이타와 수치지형모델을 이용한 산림분포 해석에 관한 연구-금오산지역을 중심으로. 서울대박사학위논문. 68pp
9 이규성, 이병천, 신준환. 1996. 환경인자의 공간분석을 통한 남한지역의 산림식생대 구분: 지리정보시스템(GIS)에 의한 접근. 한국생태학회지. 19:465-476
10 Golden software. 1999. Reference Manual: Surfer 7.0. Golden software Inc., Colorado
11 Uyeki H. 1933. On the forest zones of Korea. Acta Phytotax. Geobot. 2:73-85. (in Japanese)
12 환경부. 1999. 수치고도자료(Digital elevation model)의 구축
13 신근하. 2006. DEM을 이용한 자연환경인자와 식생분포의 공간적 관계분석-지리산 국립공원을 사례로. 한국지형학회.13:85-95
14 SAS. 1999. SAS/STAT user's guide. Release 8.01, SAS institute Inc., Cary, NC
15 이민부, 김남신, 최한성, 신근하. 2003. DEM과 Landsat 영상을 이용한 북청-단천 지역의 식생분포와 지형. 한국지형학회. 10:441-451
16 Grisebach A. 1872. Die Vegetation der Erde nach ihrer klimatischen Anordnung. Wilhelm Engelmann, Leipzig
17 Strahler AH, JT Logan and NA Bryant. 1978. Improving forest cover classification accuracy from Landsat by incorporating topographic information. Proceedings of the Twelfth International Symposium on Remote Sensing of Environment. Environmental Research Institute of Michigan. pp. 927-942
18 양금철. 2002. 한반도의 기후와 지형적 특성에 근거한 생태공간의 분류. 중앙대학교 박사학위논문
19 Davis FW and S Goetz. 1990. Modeling vegetation pattern using digital terrain data. Landscape Ecol. 4:69-80   DOI
20 Frank TD and CE Thorn. 1985. Stratifying alpine tundra for geomorphic studies using digitized aerial imagery. Arctic Alpine Res. 17: 179-188   DOI   ScienceOn
21 Frank TD. 1988. Mapping dominant vegetation communities in the Colorado Rocky Mountain Front Range with Landsat Thematic Mapper and digital temain data. Photogram. Eng. Remote Sens. 54:1727-1734
22 Yim YJ and T Kira. 1975. Distribution of forest vegetation and climate in the Korean Peninsula. I. Distribution of some indices of thermal climate. Jap. J. Ecol. 25:77-88