• Title/Summary/Keyword: Digital Satellite Radio

Search Result 54, Processing Time 0.024 seconds

Analysis of UWB Interferences in a S-DMB Receiver (S-DMB 수신기에서 UWB 시스템 간섭 분석)

  • Park Tae-Heung;Yang Hoon-Gee;Park Seong-Gyoon
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.16 no.3 s.94
    • /
    • pp.270-276
    • /
    • 2005
  • This paper presents an analytical analysis about neighboring UWB interferences in a S-DMB receiver. We first derive the C/N$_{o}$ of a S-DMB receiver, based on its specifications and present the theoretical description of its effect to UWB interferences in terms of C/(N$_{o}$+ I) and I/N$_{o}$. Using the calculated C/(N$_{o}$+ I) and I/N$_{o}$, we derive the separation distance for a S-DMB receiver not to be interfered by UWB interferences. Finally, we propose an UWB emission limit at minimum separation distance under which a S-DMB is free of UWB interferences and compare it with the value appeared in FCC proposal.

A Study on the Performane Requirement of Precise Digital Map for Road Lane Recognition (차로 구분이 가능한 정밀전자지도의 성능 요구사항에 관한 연구)

  • Kang, Woo-Yong;Lee, Eun-Sung;Lee, Geon-Woo;Park, Jae-Ik;Choi, Kwang-Sik;Heo, Moon-Beom
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.17 no.1
    • /
    • pp.47-53
    • /
    • 2011
  • To enable the efficient operation of ITS, it is necessary to collect location data for vehicles on the road. In the case of futuristic transportation systems like ubiquitous transportation and smart highway, a method of data collection that is advanced enough to incorporate road lane recognition is required. To meet this requirement, technology based on radio frequency identification (RFID) has been researched. However, RFID may fail to yield accurate location information during high-speed driving because of the time required for communication between the tag and the reader. Moreover, installing tags across all roads necessarily incurs an enormous cost. One cost-saving alternative currently being researched is to utilize GNSS (global navigation satellite system) carrierbased location information where available. For lane recognition using GNSS, a precise digital map for determining vehicle position by lane is needed in addition to the carrier-based GNSS location data. A "precise digital map" is a map containing the location information of each road lane to enable lane recognition. At present, precise digital maps are being created for lane recognition experiments by measuring the lanes in the test area. However, such work is being carried out through comparison with vehicle driving information, without definitions being established for detailed performance specifications. Therefore, this study analyzes the performance requirements of a precise digital map capable of lane recognition based on the accuracy of GNSS location information and the accuracy of the precise digital map. To analyze the performance of the precise digital map, simulations are carried out. The results show that to have high performance of this system, we need under 0.5m accuracy of the precise digital map.

GNSS Software Receivers: Sampling and jitter considerations for multiple signals

  • Amin, Bilal;Dempster, Andrew G.
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • v.2
    • /
    • pp.385-390
    • /
    • 2006
  • This paper examines the sampling and jitter specifications and considerations for Global Navigation Satellite Systems (GNSS) software receivers. Software radio (SWR) technologies are being used in the implementation of communication receivers in general and GNSS receivers in particular. With the advent of new GPS signals, and a range of new Galileo and GLONASS signals soon becoming available, GNSS is an application where SWR and software-defined radio (SDR) are likely to have an impact. The sampling process is critical for SWR receivers, where it occurs as close to the antenna as possible. One way to achieve this is by BandPass Sampling (BPS), which is an undersampling technique that exploits aliasing to perform downconversion. BPS enables removal of the IF stage in the radio receiver. The sampling frequency is a very important factor since it influences both receiver performance and implementation efficiency. However, the design of BPS can result in degradation of Signal-to-Noise Ratio (SNR) due to the out-of-band noise being aliased. Important to the specification of both the ADC and its clocking Phase- Locked Loop (PLL) is jitter. Contributing to the system jitter are the aperture jitter of the sample-and-hold switch at the input of ADC and the sampling-clock jitter. Aperture jitter effects have usually been modeled as additive noise, based on a sinusoidal input signal, and limits the achievable Signal-to-Noise Ratio (SNR). Jitter in the sampled signal has several sources: phase noise in the Voltage-Controlled Oscillator (VCO) within the sampling PLL, jitter introduced by variations in the period of the frequency divider used in the sampling PLL and cross-talk from the lock line running parallel to signal lines. Jitter in the sampling process directly acts to degrade the noise floor and selectivity of receiver. Choosing an appropriate VCO for a SWR system is not as simple as finding one with right oscillator frequency. Similarly, it is important to specify the right jitter performance for the ADC. In this paper, the allowable sampling frequencies are calculated and analyzed for the multiple frequency BPS software radio GNSS receivers. The SNR degradation due to jitter in a BPSK system is calculated and required jitter standard deviation allowable for each GNSS band of interest is evaluated. Furthermore, in this paper we have investigated the sources of jitter and a basic jitter budget is calculated that could assist in the design of multiple frequency SWR GNSS receivers. We examine different ADCs and PLLs available in the market and compare known performance with the calculated budget. The results obtained are therefore directly applicable to SWR GNSS receiver design.

  • PDF

Design of a Fully Reconfigurable Multi-Constellation and Multi-Frequency GNSS Signal Generator

  • ByungHyun Choi;Young-Jin Song;Subin Lee;Jong-Hoon Won
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.12 no.3
    • /
    • pp.295-306
    • /
    • 2023
  • This paper presents a multi-frequency and multi-constellation Global Navigation Satellite System (GNSS) signal generator that simulates intermediate frequency level digital signal samples for testing GNSS receivers. GNSS signal generators are ideally suited for testing the performance of GNSS receivers and algorithms under development in the laboratory for specific user locations and environments. The proposed GNSS signal generator features a fully-reconfigurable structure with the ability to adjust signal parameters, which is beneficial to generate desired signal characteristics for multiple scenarios including multi-constellation and frequencies. Successful signal acquisition, tracking, and navigation are demonstrated on a verified Software Defined Radio (SDR) in this study. This work has implications for future studies and advances the research and development of new GNSS signals.

A study on the BSS replanning of ITU-R (ITU-R의 방송위성계획 개정에 관한 연구)

  • 장재철;양규식
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.5 no.1
    • /
    • pp.1-7
    • /
    • 2001
  • WRC-2000 adopted the Regions 1 and 3 BSS and associated feeder-link Plans as well as the Regions 1 and 3 BSS and associated feeder-link Lists. These Regions 1 and 3 BSS and associated feeder-link Plans provide, in general, each country of Region 1 with 10 digital channels of 27MHZ bandwidth and each country of Region 3 with 12 digital channels of 27MHZ bandwidth. In this study, we summarize the results of associated meetings and analyze the effects of BSS replanning in Korea. We study the effective interference analysis through the review of Radio Regulations and associate Resolution. Furthermore, interference analysis of inter-broadcasting satellite systems will be done with MSPACEG S/W.

  • PDF

The Analysis of Requirements for Safe Self-Operation (안전한 자율운항을 위한 요구 조건 분석)

  • Hong, Sung-Hwa
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2021.05a
    • /
    • pp.508-510
    • /
    • 2021
  • As the international standardization of 5G element technologies (e.g., 5G vertical satellite, direct communication functions between 5G NR (New Radio)-based devices) required not only in 5G verticals but also in autonomous navigation services is currently underway, it is expected to be utilized for autonomous navigation services while utilizing the economic size advantages of the scale of international standard-based solutions through 3GPP international standardization of marine communication services related to autonomous navigation vessels. In order to establish the ecosystem of ICT convergence market related to autonomous navigation vessels and to preoccupy core communication technology based on international standards, it is necessary to develop digital communication systems and gateways that have global compatibility, (2) secure core element technology based on next generation communication, and (3) promote international standardization for internationalization of related technologies. For this, data analysis and standard technology should be developed through service analysis by distance. Currently, the requirements for the operation of autonomous navigation vessels can be classified into three categories.

  • PDF

Multiple Differential Feedback Detection of M-ary DPSK Signal in Shadowed Rician Fading Channel (쉐도우 라이시안 페이딩 채널에서 M-ary DPSK 신호의 다중 차동 궤환 검파)

  • 박문수;김환용
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.7 no.1
    • /
    • pp.61-70
    • /
    • 1996
  • M-ary differential phase shift keying(DPSK)is a bandwidth efficient digital modulation technique and recently has attracted increased attention in mobile satellite communication application where the available radio bandwidth is limited. Coherent detection offers good BER performance in AWGN channel. However, it requires long acquisition times in fading environment. In this paper, we analyze the BER performance of M-ary DPSK signal using the Multiple Differ- ential Feedback Detection(MDFD) technique in Rician fading and shadowed Rician fading channel. MDFD is an efficient scheme to decrease the performance gap between differential and coherent reception by increasing the complexity of the conventional differential receiver to some extent. Compared to the multiple symbol maximum likelihood detection technique, the multiple differential feedback detection technique has a much simpler structure for hardware implementation. Espe- cially, this technique has application to land mobile satellite channel which can vary in time and space between AWGN and rapidly fading channel.

  • PDF

An Efficient FTN Decoding Method using Separation of LDPC Decoding Symbol in Next Generation Satellite Broadcasting System (차세대 위성 방송 시스템에서 LDPC 복호 신호 분리를 통한 효율적인 FTN 복호 방법)

  • Sung, Hahyun;Jung, Jiwon
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.16 no.2
    • /
    • pp.63-70
    • /
    • 2016
  • To increase throughput efficiency and improve performance, FTN(Faster Than Nyquist) method and LDPC(Low Density Parity Code) codes are employed in DVB-S3 system. In this paper, we proposed efficient turbo equalization model to minimize inter symbol interference induced by FTN transmission. This paper introduces two conventional scheme employing SIC(Successive Interference Cancellation) and BCJR equalizer. Then, we proposed new scheme to resolve problems in this two conventional scheme. To make performance improved in turbo equalization model, the outputs of LDPC and BCJR equalizer are iteratively exchange probabilistic information. In fed LDPC outputs as extrinsic informa tion of BCJR equalizer. we split LDPC output to separate bit probabilities. We compare performance of proposed scheme to that of conventional methods through using simulation in AWGN(Additive White Gaussian Noise) channel. We confirmed that performance was improved compared to conventional methods as increasing throughput parameters of FTN.

Multidimensional Networking Application of Ship Black Box and Forensic Data Extraction (다차원 네트워킹을 적용한 선박 블랙박스에서 Forensic자료 생성)

  • Park, Dea-Woo
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2009.10a
    • /
    • pp.387-390
    • /
    • 2009
  • Digital devices that apply Ubiquitous-IT Convergence in ship manufacture are used as ship automation device. Need sailing data recording of ship black box that equip integrity and consecutiveness as legal confesser fare that inquire responsibility whereabouts of disaster such as fire of ship. It is research that create Forensic data from ship black box using Multidimensional networking that use ZigBee radio short distance communications division Wireless LAN with short distance RFID sensor that is used in ship in this treatise, UWB communication, GPS and artificial satellite. Sailing recording of shipping that is recorded to black box is transmited, and stores doubly by real time on ship insurance company and ship administration recording membrane using SHA-1 hash function and secure consecutiveness and integrity as Forensic data through artificial satellite encoding by 3DES 1024bit.

  • PDF