• Title/Summary/Keyword: Digital Processing

Search Result 4,707, Processing Time 0.032 seconds

Performance Evaluation of KOMPSAT-3 Satellite DSM in Overseas Testbed Area (해외 테스트베드 지역 아리랑 위성 3호 DSM 성능평가)

  • Oh, Kwan-Young;Hwang, Jeong-In;Yoo, Woo-Sun;Lee, Kwang-Jae
    • Korean Journal of Remote Sensing
    • /
    • v.36 no.6_2
    • /
    • pp.1615-1627
    • /
    • 2020
  • The purpose of this study is to compare and analyze the performance of KOMPSAT-3 Digital Surface Model (DSM) made in overseas testbed area. To that end, we collected the KOMPSAT-3 in-track stereo image taken in San Francisco, the U.S. The stereo geometry elements (B/H, converse angle, etc.) of the stereo image taken were all found to be in the stable range. By applying precise sensor modeling using Ground Control Point (GCP) and DSM automatic generation technique, DSM with 1 m resolution was produced. Reference materials for evaluation and calibration are ground points with accuracy within 0.01 m from Compass Data Inc., 1 m resolution Elevation 1-DSM produced by Airbus. The precision sensor modeling accuracy of KOMPSAT-3 was within 0.5 m (RMSE) in horizontal and vertical directions. When the difference map was written between the generated DSM and the reference DSM, the mean and standard deviation were 0.61 m and 5.25 m respectively, but in some areas, they showed a large difference of more than 100 m. These areas appeared mainly in closed areas where high-rise buildings were concentrated. If KOMPSAT-3 tri-stereo images are used and various post-processing techniques are developed, it will be possible to produce DSM with more improved quality.

MLP-based 3D Geotechnical Layer Mapping Using Borehole Database in Seoul, South Korea (MLP 기반의 서울시 3차원 지반공간모델링 연구)

  • Ji, Yoonsoo;Kim, Han-Saem;Lee, Moon-Gyo;Cho, Hyung-Ik;Sun, Chang-Guk
    • Journal of the Korean Geotechnical Society
    • /
    • v.37 no.5
    • /
    • pp.47-63
    • /
    • 2021
  • Recently, the demand for three-dimensional (3D) underground maps from the perspective of digital twins and the demand for linkage utilization are increasing. However, the vastness of national geotechnical survey data and the uncertainty in applying geostatistical techniques pose challenges in modeling underground regional geotechnical characteristics. In this study, an optimal learning model based on multi-layer perceptron (MLP) was constructed for 3D subsurface lithological and geotechnical classification in Seoul, South Korea. First, the geotechnical layer and 3D spatial coordinates of each borehole dataset in the Seoul area were constructed as a geotechnical database according to a standardized format, and data pre-processing such as correction and normalization of missing values for machine learning was performed. An optimal fitting model was designed through hyperparameter optimization of the MLP model and model performance evaluation, such as precision and accuracy tests. Then, a 3D grid network locally assigning geotechnical layer classification was constructed by applying an MLP-based bet-fitting model for each unit lattice. The constructed 3D geotechnical layer map was evaluated by comparing the results of a geostatistical interpolation technique and the topsoil properties of the geological map.

Information Technologies as an Incentive to Develop the Creative Potential of the Educational Process

  • Natalia, Vdovychenko;Volodymyr, Kukorenchuk;Alina, Ponomarenko;Mykola, Honcharenko;Eduard, Stranadko
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.4
    • /
    • pp.408-416
    • /
    • 2022
  • The new millennium is characterized by an unprecedented breakthrough in knowledge and information and communication technologies, and the challenges of the XXI century require modernized paradigms of interaction in all spheres of life. Education continues to play a key role in national and global growth. The key role of education and its leadership in developing creative potential, as the main paradigm of the countries' stability, have significantly influenced educational centers. The developers of educational programs use information technologies as an incentive to develop creative potential of educational process. Professional training of the educational candidate is enhanced by the use of information technologies, so the educational applicants should develop technological skills to be productive members of society. Using the latest achievements in the field of information technologies for the organization of the educational process helps to form the operational style of education applicants' thinking, which provides the ability to acquire skills of processing information, that is presented in the text, graphic, tabular form, and increase the level of general and informational culture necessary for better orientation in the modern information space. The purpose of the research is to determine the effectiveness of information technologies as an incentive to develop creative potential of educational process on the basis of the survey, to establish advantages and ability to provide high-quality education in the context of using information technologies. Methods of research: comparative analysis; systematization; generalization, survey. Results. Based on the survey conducted among students and teachers, it has been found out that the teachers use the following information technologies for the development of creative potential of the educational process: to provide video and audio communication process (100%), Moodle (95,6%), Duolingo (89,7%), LinguaLeo (89%), Google Forms (88%) and Adobe Captivate Prime (80,6%). It is determined that modular digital learning environments (97,9%), interactive exercises tools (96,3%), ICT for video and audio communication (96%) and interactive exercises tools (95,1%) are most conducive to the development of creative potential of the educational process. As a result of the research, it was revealed that implementation of information technologies for the development of creative potential of educational process in educational institutions is a complex process due to a large number of variables, which should be taken into account both on the educational course and on the individual level. It has been determined that the using the model of implementation information technologies for the development of creative potential in educational process, which is stimulated due to this model, benefits both students and teachers by establishing a reliable bilateral connection between teacher and education applicant.

Building change detection in high spatial resolution images using deep learning and graph model (딥러닝과 그래프 모델을 활용한 고해상도 영상의 건물 변화탐지)

  • Park, Seula;Song, Ahram
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.40 no.3
    • /
    • pp.227-237
    • /
    • 2022
  • The most critical factors for detecting changes in very high-resolution satellite images are building positional inconsistencies and relief displacements caused by satellite side-view. To resolve the above problems, additional processing using a digital elevation model and deep learning approach have been proposed. Unfortunately, these approaches are not sufficiently effective in solving these problems. This study proposed a change detection method that considers both positional and topology information of buildings. Mask R-CNN (Region-based Convolutional Neural Network) was trained on a SpaceNet building detection v2 dataset, and the central points of each building were extracted as building nodes. Then, triangulated irregular network graphs were created on building nodes from temporal images. To extract the area, where there is a structural difference between two graphs, a change index reflecting the similarity of the graphs and differences in the location of building nodes was proposed. Finally, newly changed or deleted buildings were detected by comparing the two graphs. Three pairs of test sites were selected to evaluate the proposed method's effectiveness, and the results showed that changed buildings were detected in the case of side-view satellite images with building positional inconsistencies.

Descent Dataset Generation and Landmark Extraction for Terrain Relative Navigation on Mars (화성 지형상대항법을 위한 하강 데이터셋 생성과 랜드마크 추출 방법)

  • Kim, Jae-In
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.6_1
    • /
    • pp.1015-1023
    • /
    • 2022
  • The Entry-Descent-Landing process of a lander involves many environmental and technical challenges. To solve these problems, recently, terrestrial relative navigation (TRN) technology has been essential for landers. TRN is a technology for estimating the position and attitude of a lander by comparing Inertial Measurement Unit (IMU) data and image data collected from a descending lander with pre-built reference data. In this paper, we present a method for generating descent dataset and extracting landmarks, which are key elements for developing TRN technologies to be used on Mars. The proposed method generates IMU data of a descending lander using a simulated Mars landing trajectory and generates descent images from high-resolution ortho-map and digital elevation map through a ray tracing technique. Landmark extraction is performed by an area-based extraction method due to the low-textured surfaces on Mars. In addition, search area reduction is carried out to improve matching accuracy and speed. The performance evaluation result for the descent dataset generation method showed that the proposed method can generate images that satisfy the imaging geometry. The performance evaluation result for the landmark extraction method showed that the proposed method ensures several meters of positioning accuracy while ensuring processing speed as fast as the feature-based methods.

Efficient Privacy-Preserving Duplicate Elimination in Edge Computing Environment Based on Trusted Execution Environment (신뢰실행환경기반 엣지컴퓨팅 환경에서의 암호문에 대한 효율적 프라이버시 보존 데이터 중복제거)

  • Koo, Dongyoung
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.11 no.9
    • /
    • pp.305-316
    • /
    • 2022
  • With the flood of digital data owing to the Internet of Things and big data, cloud service providers that process and store vast amount of data from multiple users can apply duplicate data elimination technique for efficient data management. The user experience can be improved as the notion of edge computing paradigm is introduced as an extension of the cloud computing to improve problems such as network congestion to a central cloud server and reduced computational efficiency. However, the addition of a new edge device that is not entirely reliable in the edge computing may cause increase in the computational complexity for additional cryptographic operations to preserve data privacy in duplicate identification and elimination process. In this paper, we propose an efficiency-improved duplicate data elimination protocol while preserving data privacy with an optimized user-edge-cloud communication framework by utilizing a trusted execution environment. Direct sharing of secret information between the user and the central cloud server can minimize the computational complexity in edge devices and enables the use of efficient encryption algorithms at the side of cloud service providers. Users also improve the user experience by offloading data to edge devices, enabling duplicate elimination and independent activity. Through experiments, efficiency of the proposed scheme has been analyzed such as up to 78x improvements in computation during data outsourcing process compared to the previous study which does not exploit trusted execution environment in edge computing architecture.

SAR(Synthetic Aperture Radar) 3-Dimensional Scatterers Point Cloud Target Model and Experiments on Bridge Area (영상레이더(SAR)용 3차원 산란점 점구름 표적모델의 교량 지역에 대한 적용)

  • Jong Hoo Park;Sang Chul Park
    • Journal of the Korea Society for Simulation
    • /
    • v.32 no.3
    • /
    • pp.1-8
    • /
    • 2023
  • Modeling of artificial targets in Synthetic Aperture radar (SAR) mainly simulates radar signals reflected from the faces and edges of the 3D Computer Aided Design (CAD) model with a ray-tracing method, and modeling of the clutter on the Earth's surface uses a method of distinguishing types with similar distribution characteristics through statistical analysis of the SAR image itself. In this paper, man-made targets on the surface and background clutter on the terrain are integrated and made into a three-dimensional (3D) point cloud scatterer model, and SAR image were created through computational signal processing. The results of the SAR Stripmap image generation of the actual automobile based SAR radar system and the results analyzed using EM modeling or statistical distribution models are compared with this 3D point cloud scatterer model. The modeling target is selected as an bridge because it has the characteristic of having both water surface and ground terrain around the bridge and is also a target of great interest in both military and civilian use.

Real Estate Asset NFT Tokenization and FT Asset Portfolio Management (부동산 유동화 NFT와 FT 분할 거래 시스템 설계 및 구현)

  • Young-Gun Kim;Seong-Whan Kim
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.12 no.9
    • /
    • pp.419-430
    • /
    • 2023
  • Currently, NFTs have no dominant application except for the proof of ownership for digital content, and it also have small liquidity problem, which makes their price difficult to predict. Real estate usually has very high barriers to investment due to its high pricing. Real estate can be converted into NFTs and also divided into small value fungible tokens (FTs), and it can increase the the volume of the investor community due to more liquidity and better accessibility. In this document, we implement and design a system that allows ordinary users can invest on high priced real estate utilizing Black Litterman (BL) model-based Portfolio investment interface. To this end, we target a set of real estates pegged as collateral and issue NFT for the collateral using blockchain. We use oracle to get the current real estate information and to monitor varying real estate prices. After tokenizing real estate into NFTs, we divide the NFTs into easily accessible price FTs, thereby, we can lower prices and provide large liquidity with price volatility limited. In addition, we also implemented BL based asset portfolio interface for effective portfolio composition for investing in multiple of real estates with small investments. Using BL model, investors can fix the asset portfolio. We implemented the whole system using Solidity smart contracts on Flask web framework with public data portals as oracle interfaces.

A Forensic Methodology for Detecting Image Manipulations (이미지 조작 탐지를 위한 포렌식 방법론)

  • Jiwon Lee;Seungjae Jeon;Yunji Park;Jaehyun Chung;Doowon Jeong
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.33 no.4
    • /
    • pp.671-685
    • /
    • 2023
  • By applying artificial intelligence to image editing technology, it has become possible to generate high-quality images with minimal traces of manipulation. However, since these technologies can be misused for criminal activities such as dissemination of false information, destruction of evidence, and denial of facts, it is crucial to implement strong countermeasures. In this study, image file and mobile forensic artifacts analysis were conducted for detecting image manipulation. Image file analysis involves parsing the metadata of manipulated images and comparing them with a Reference DB to detect manipulation. The Reference DB is a database that collects manipulation-related traces left in image metadata, which serves as a criterion for detecting image manipulation. In the mobile forensic artifacts analysis, packages related to image editing tools were extracted and analyzed to aid the detection of image manipulation. The proposed methodology overcomes the limitations of existing graphic feature-based analysis and combines with image processing techniques, providing the advantage of reducing false positives. The research results demonstrate the significant role of such methodology in digital forensic investigation and analysis. Additionally, We provide the code for parsing image metadata and the Reference DB along with the dataset of manipulated images, aiming to contribute to related research.

Comparing the 2015 with the 2022 Revised Primary Science Curriculum Based on Network Analysis (2015 및 2022 개정 초등학교 과학과 교육과정에 대한 비교 - 네트워크 분석을 중심으로 -)

  • Jho, Hunkoog
    • Journal of Korean Elementary Science Education
    • /
    • v.42 no.1
    • /
    • pp.178-193
    • /
    • 2023
  • The aim of this study was to investigate differences in the achievement standards from the 2015 to the 2022 revised national science curriculum and to present the implications for science teaching under the revised curriculum. Achievement standards relevant to primary science education were therefore extracted from the national curriculum documents; conceptual domains in the two curricula were analyzed for differences; various kinds of centrality were computed; and the Louvain algorithm was used to identify clusters. These methods revealed that, in the revised compared with the preceding curriculum, the total number of nodes and links had increased, while the number of achievement standards had decreased by 10 percent. In the revised curriculum, keywords relevant to procedural skills and behavior received more emphasis and were connected to collaborative learning and digital literacy. Observation, survey, and explanation remained important, but varied in application across the fields of science. Clustering revealed that the number of categories in each field of science remained mostly unchanged in the revised compared with the previous curriculum, but that each category highlighted different skills or behaviors. Based on those findings, some implications for science instruction in the classroom are discussed.