• 제목/요약/키워드: Digital Instrumentation and Control System

검색결과 124건 처리시간 0.02초

AN OVERVIEW OF RISK QUANTIFICATION ISSUES FOR DIGITALIZED NUCLEAR POWER PLANTS USING A STATIC FAULT TREE

  • Kang, Hyun-Gook;Kim, Man-Cheol;Lee, Seung-Jun;Lee, Ho-Jung;Eom, Heung-Seop;Choi, Jong-Gyun;Jang, Seung-Cheol
    • Nuclear Engineering and Technology
    • /
    • 제41권6호
    • /
    • pp.849-858
    • /
    • 2009
  • Risk caused by safety-critical instrumentation and control (I&C) systems considerably affects overall plant risk. As digitalization of safety-critical systems in nuclear power plants progresses, a risk model of a digitalized safety system is required and must be included in a plant safety model in order to assess this risk effect on the plant. Unique features of a digital system cause some challenges in risk modeling. This article aims at providing an overview of the issues related to the development of a static fault-tree-based risk model. We categorize the complicated issues of digital system probabilistic risk assessment (PRA) into four groups based on their characteristics: hardware module issues, software issues, system issues, and safety function issues. Quantification of the effect of these issues dominates the quality of a developed risk model. Recent research activities for addressing various issues, such as the modeling framework of a software-based system, the software failure probability and the fault coverage of a self monitoring mechanism, are discussed. Although these issues are interrelated and affect each other, the categorized and systematic approach suggested here will provide a proper insight for analyzing risk from a digital system.

TMS320C25 DSP를 이용한 실시간 TWS 시스템 구현 (On the Real Time Implementation of the TWS System Using the TMS320C25 DSP)

  • 기석철;이상욱
    • 대한전자공학회논문지
    • /
    • 제26권6호
    • /
    • pp.147-155
    • /
    • 1989
  • 본 논문에서는 고속 신호처리 프로세서(digital signal processor)인 TMS320C25를 사용하여 칼만 필터링 기법을 이용한 실시간 TWS(track-while-scan) 시스템의 구현에 대하여 고찰하였다. 먼저 고정 소숫점 연산에 의해 칼만 필터를 구현 할 때 생기는 FWL(finite word length)의 영향에 대하여 알아 보았다. 실시간 TWS 시스템은 TWS연산부, 스캔 컨버터(scan converter) 그리고 시스템 제어부로 구성하였고 시스템 버스는 multi-bus를 채택하였다. TWS 시스템은 최대 8개의 표적을 동시 추적하기 위하여 제작되었으며, 실험을 통하여 8개의 표적을 동시에 추적하는데 부동 소숫점 연산시 약 0.35sce, 고정 소숫점 연산시 약 0.28sec의 시간이 소요된다는 결과를 보임으로써 칼만 필터를 실시간으로 처리 할 수 있는 충분한 가능성을 제시하였다.

  • PDF

DEVELOPMENT OF RPS TRIP LOGIC BASED ON PLD TECHNOLOGY

  • Choi, Jong-Gyun;Lee, Dong-Young
    • Nuclear Engineering and Technology
    • /
    • 제44권6호
    • /
    • pp.697-708
    • /
    • 2012
  • The majority of instrumentation and control (I&C) systems in today's nuclear power plants (NPPs) are based on analog technology. Thus, most existing I&C systems now face obsolescence problems. Existing NPPs have difficulty in repairing and replacing devices and boards during maintenance because manufacturers no longer produce the analog devices and boards used in the implemented I&C systems. Therefore, existing NPPs are replacing the obsolete analog I&C systems with advanced digital systems. New NPPs are also adopting digital I&C systems because the economic efficiencies and usability of the systems are higher than the analog I&C systems. Digital I&C systems are based on two technologies: a microprocessor based system in which software programs manage the required functions and a programmable logic device (PLD) based system in which programmable logic devices, such as field programmable gate arrays, manage the required functions. PLD based systems provide higher levels of performance compared with microprocessor based systems because PLD systems can process the data in parallel while microprocessor based systems process the data sequentially. In this research, a bistable trip logic in a reactor protection system (RPS) was developed using very high speed integrated circuits hardware description language (VHDL), which is a hardware description language used in electronic design to describe the behavior of the digital system. Functional verifications were also performed in order to verify that the bistable trip logic was designed correctly and satisfied the required specifications. For the functional verification, a random testing technique was adopted to generate test inputs for the bistable trip logic.

FPGA를 이용한 디지털 계측 시스템의 설계 및 구현 (Implementation and Design of Digital Instruments System using FPGA)

  • 최현준;장석우
    • 디지털산업정보학회논문지
    • /
    • 제9권2호
    • /
    • pp.55-61
    • /
    • 2013
  • A field-programmable gate array (FPGA) is an integrated circuit designed to be configured by a customer or a designer after manufacturing. The FPGA configuration is generally specified using a hardware description language (HDL), similar to that used for an application-specific integrated circuit (ASIC) (circuit diagrams were previously used to specify the configuration, as they were for ASICs, but this is increasingly rare). Contemporary FPGAs have large resources of logic gates and RAM blocks to implement complex digital computations. In this paper, we implement a system of digital instrumentation using FPGA. This system consists of the trigger part, memory address controller part, control FSM part, Encoder part, LCD controller part. The hardware implement using FPGA and the verification of the operation is done in a PC simulation. The proposed hardware was mapped into Cyclone III EP2C5Q208 from Altera and used 1,700(40%) of Logic Element (LE). The implemented circuit used 24,576-bit memory element with 6-bit input signal. The result from implementing in hardware (FPGA) could operate stably in 140MHz.

유전알고리즘을 이용한 연속시스템의 온라인 퍼래미터 추정 (On-line parameter estimation of continuous-time systems using a genetic algorithm)

  • 이현식;진강규
    • 제어로봇시스템학회논문지
    • /
    • 제4권1호
    • /
    • pp.76-81
    • /
    • 1998
  • This paper presents an on-line scheme for parameter estimation of continuous-time systems, based on the model adjustment technique and the genetic algorithm technique. To deal with the initialisation and unmeasurable signal problems in on-line parameter estimation of continuous-time systems, a discrete-time model is obtained for the linear differential equation model and approximations of unmeasurable states with the observable output and its time-delayed values are obtained for the nonlinear state space model. Noisy observations may affect these approximation processes and degrade the estimation performance. A digital prefilter is therefore incorporated to avoid direct approximations of system derivatives from possible noisy observations. The parameters of both the model and the designed filter are adjusted on-line by a genetic algorithm, A set of simulation works for linear and nonlinear systems is carried out to demonstrate the effectiveness of the proposed method.

  • PDF

ANALYZING DYNAMIC FAULT TREES DERIVED FROM MODEL-BASED SYSTEM ARCHITECTURES

  • Dehlinger, Josh;Dugan, Joanne Bechta
    • Nuclear Engineering and Technology
    • /
    • 제40권5호
    • /
    • pp.365-374
    • /
    • 2008
  • Dependability-critical systems, such as digital instrumentation and control systems in nuclear power plants, necessitate engineering techniques and tools to provide assurances of their safety and reliability. Determining system reliability at the architectural design phase is important since it may guide design decisions and provide crucial information for trade-off analysis and estimating system cost. Despite this, reliability and system engineering remain separate disciplines and engineering processes by which the dependability analysis results may not represent the designed system. In this article we provide an overview and application of our approach to build architecture-based, dynamic system models for dependability-critical systems and then automatically generate dynamic fault trees (DFT) for comprehensive, tool-supported reliability analysis. Specifically, we use the Architectural Analysis and Design Language (AADL) to model the structural, behavioral and failure aspects of the system in a composite architecture model. From the AADL model, we seek to derive the DFT(s) and use Galileo's automated reliability analyses to estimate system reliability. This approach alleviates the dependability engineering - systems engineering knowledge expertise gap, integrates the dependability and system engineering design and development processes and enables a more formal, automated and consistent DFT construction. We illustrate this work using an example based on a dynamic digital feed-water control system for a nuclear reactor.

원전 계측제어시스템 사이버보안 위험도 산정 프로세스 (Risk Rating Process of Cyber Security Threats in NPP I&C)

  • 이우묘;정만현;민병길;서정택
    • 정보보호학회논문지
    • /
    • 제25권3호
    • /
    • pp.639-648
    • /
    • 2015
  • 2000년대 들어 아날로그기술 기반의 원전 계측제어시스템에 디지털기술이 적용되기 시작하였고 현재 국내에서 건설 중인 신월성 원전 2호기, 신고리 원전 3 4호기, 신울진 원전 1 2호기는 국산 MMIS가 적용된 한국형 원전 APR1400 디지털 계측제어시스템을 적용하고 있어 대부분의 장비가 디지털화 되었다. 이러한 디지털 장비는 기존 아날로그 장비에 비해 사이버공격에 취약하므로 원전 계측제어시스템의 사이버보안이 중요한 이슈로 부각되고 있다. 본 논문은 원전계측제어시스템의 사이버보안 위협별 위험도산정 프로세스를 제안하고 원전계측제어시스템개발(KINCS) 사업에서 개발된 원자로보호계통에 제안하는 프로세스를 적용하여 RPS 노드 및 인터페이스의 위협별 위험도를 산출하였다.

METHOD FOR THE ANALYSIS OF TEMPORAL CHANGE OF PHYSICAL STRUCTURE IN THE INSTRUMENTATION AND CONTROL LIFE-CYCLE

  • Goring, Markus;Fay, Alexander
    • Nuclear Engineering and Technology
    • /
    • 제45권5호
    • /
    • pp.653-664
    • /
    • 2013
  • The design of computer-based instrumentation and control (I&C) systems is determined by the allocation of I&C functions to I&C systems and components. Due to the characteristics of computer-based technology, component failures can negatively affect several I&C functions, so that the reliability proof of the I&C systems requires the accomplishment of I&C system design analyses throughout the I&C life-cycle. On one hand, this paper proposes the restructuring of the sequential IEC 61513 I&C life-cycle according to the V-model, so as to adequately integrate the concept of verification and validation. On the other hand, based on a metamodel for the modeling of I&C systems, this paper introduces a method for the modeling and analysis of the effects with respect to the superposition of failure combinations and event sequences on the I&C system design, i.e. the temporal change of physical structure is analyzed. In the first step, the method is concerned with the modeling of the I&C systems. In the second step, the method considers the analysis of temporal change of physical structure, which integrates the concepts of the diversity and defense-in-depth analysis, fault tree analysis, event tree analysis, and failure mode and effects analysis.

Single-phase Uninterruptible Power Supply employing Superconducting Magnet Energy Storage Unit

  • Kang, Feel-Soon
    • Journal of information and communication convergence engineering
    • /
    • 제5권4호
    • /
    • pp.362-368
    • /
    • 2007
  • A single-phase uninterruptible power supply system equipped with a superconducting magnet energy storage unit is proposed to achieve a simple circuit configuration and higher system reliability. It reduces a number of switching devices by applying a common-arm scheme. Removing some switches or substituting passive elements for active switches can increase the sophistication and reduces degree of freedom in control strategy. However, high-performance DSP controller can execute the complicated control task with no additional cost. Operational principles to normal, stored-energy, and bypass mode are discussed in detail. The validity of the proposed system is verified by experimental results.

Application of Self-Organizing Fuzzy Logic Controller to Nuclear Steam Generator Level Control

  • Park, Gee-Yong;Park, Jae-Chang;Kim, Chang-Hwoi;Kim, Jung-So;Jung, Chul-Hwan;Seong, Poong-Hyun
    • 한국원자력학회:학술대회논문집
    • /
    • 한국원자력학회 1996년도 추계학술발표회논문집(1)
    • /
    • pp.85-90
    • /
    • 1996
  • In this paper, the self-organizing fuzzy logic controller is developed for water level control of steam generator. In comparison with conventional fuzzy logic controllers, this controller performs control task with no control rules at initial and creates control rules as control behavior goes on, and also modifies its control structure when uncertain disturbance is suspected. Selected parameters in the fuzzy logic controller are updated on-line by the gradient descent loaming algorithm based on the performance cost function. This control algorithm is applied to water level control of steam generator model developed by Lee, et al. The computer simulation results confirm good performance of this control algorithm in all power ranges. This control algorithm can be expected to be used for automatic control of feedwater control system in the nuclear power plant with digital instrumentation and control systems.

  • PDF