• Title/Summary/Keyword: Digital Infrared Thermal Images

Search Result 27, Processing Time 0.031 seconds

A Study on the Improvement of Image Quality for a Thermal Imaging System with focal Plane Array Typed Sensor (초점면 배열 방식 열상 카메라 시스템의 화질 개선 연구)

  • 박세화
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.1 no.2
    • /
    • pp.27-31
    • /
    • 2000
  • Thermal imaging system is implemented for the measurement and the analysis of the thermal distribution of the target objects. The main Part of the system is thermal camera in which a focal plane array typed sensor is introduced The sensor detects mid-range infrared spectrum or target objects and then it output generic video signal which should be processed to form a thermal image frame. A digital signal processor(DSP) in the system inputs analog to digital converted data. performs algorithms to improve the thermal images and then outputs the corrected frame data to frame buffers for NTSC encoding and for digital outputs.. To enhance the quality of the thermal images, two point correction method is applied. Figures indicate that the corrected thermal images are much improved.

  • PDF

Stream Environment Monitoring using UAV Images (RGB, Thermal Infrared) (UAV 영상(RGB, 적외 열 영상)을 활용한 하천환경 모니터링)

  • Kang, Joon-Oh;Kim, Dal-Joo;Han, Woong-Ji;Lee, Yong-Chang
    • Journal of Urban Science
    • /
    • v.6 no.2
    • /
    • pp.17-27
    • /
    • 2017
  • Recently, civil complaints have increased due to water pollution and bad smell in rivers. Therefore, attention is focused on improving the river environment. The purpose of this study is to acquire RGB and thermal infrared images using UAV for sewage outlet and to monitor the status of stream pollution and the applicability UAV based images for river embankment maintenance plan was examined. The accuracy of the 3D model was examination by SfM(Structure from Motion) based images analysis on river embankment maintenance area. Especially, The wastewater discharged from the factory near the river was detected as an thermal infrared images and the flow of wastewater was monitored. As a result of the study, we could monitor the cause and flows of wastewater pollution by detecting temperature change caused by wastewater inflow using UAV images. In addition, UAV based a high precision 3D model (DTM, Digital Topographic Map, Orthophoto Mosaic) was produced to obtain precise DSM(Digital Surface Model) and vegetation cover information for river embankment maintenance.

  • PDF

Visible Image Enhancement Method Considering Thermal Information from Infrared Image (원적외선 영상의 열 정보를 고려한 가시광 영상 개선 방법)

  • Kim, Seonkeol;Kang, Hang-Bong
    • Journal of Broadcast Engineering
    • /
    • v.18 no.4
    • /
    • pp.550-558
    • /
    • 2013
  • The infrared and visible images are represented by different information due to the different wavelength of the light. The infrared image has thermal information and the visible image has texture information. Desirable results are obtained by fusing infrared and visible information. To enhance a visible image, we extract a weight map from a visible image using saturation, brightness. After that, the weight map is adjusted using thermal information in the infrared image. Finally, an enhanced image is resulted from combining an infrared image and a visible image. Our experiment results show that our proposed algorithm is working well to enhance the smoke in the original image.

Characteristics of Infrared Blocking, Stealth and Color Difference of Aluminum Sputtered Fabrics

  • Han, Hye Ree
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.43 no.4
    • /
    • pp.592-604
    • /
    • 2019
  • This study examines the stealth function of sputtered fabric with an infrared thermal imaging camera in terms of the thermal and infrared (IR) transmittance characteristics. Various base fabrics were selected, infrared imaging was performed, and infrared transmittance was measured. By infrared camera experiment it was found that the sample was concealed because it had a similar color to the surroundings when the aluminum layer was directed toward the outside. In addition, a comparison of the infrared thermographic image of the untreated sample and the sputtered sample in the laboratory showed that the difference in ${\Delta}E$ value ranged from 31 to 90.4 and demonstrated effective concealment. However, concealment was not observed in the case of the 3-layer (Nylon-Al-Nylon) model when a sputtered aluminum layer existed between two nylon layers. The direction of the sputtering layer did not affect the infrared transmittance in the infrared transmittance experiment. Therefore, it seems better to interpret the concealing effect in the infrared thermographic images by using thermal transfer theory rather than infrared transmittance theory. We believe that the results of this study will be applicable to developing high performance smart clothing and military uniforms.

Performance Evaluation of the Developed Diagnostic Multi-Leaf Collimator and Implementation of Fusion Image of X-ray Image and Infrared Thermography Image (개발한 진단용 다엽조리개 성능평가 및 X선영상과 적외선체열영상의 융합영상 구현)

  • Kwon, Soon-Mu;Shim, Jae-Goo;Chon, Kwon-Su
    • Journal of radiological science and technology
    • /
    • v.42 no.5
    • /
    • pp.365-371
    • /
    • 2019
  • We have developed and applied a diagnostic Multi-Leaf Collimator (MLC) to optimized the X-ray field in medical imaging and the usefulness evaluated through the fusion of infrared image and X-ray image acquired by infrared camera. The hand and skull radiography with multi-leaf collimator(MLC) showed significant area dose reductions of 22.9% and 31.3% compared to ARC and leakage dose was compliant with KS A 4732. Also scattering doses of 50 cm and 100 cm showed a significant decrease to confirm the usefulness of MLC. It was confirmed that the fusion of infrared images with an adjustable degree of transparency was possible in the X-ray images. Therefore, fusion of anatomical information with physiological convergence is expected to contribute and improvement of diagnostic ability. In addition, the feasibility of convergence X-ray imaging and DITI devices and the possibility of driving MLC with infrared images were confirmed.

A semi-automated method for integrating textural and material data into as-built BIM using TIS

  • Zabin, Asem;Khalil, Baha;Ali, Tarig;Abdalla, Jamal A.;Elaksher, Ahmed
    • Advances in Computational Design
    • /
    • v.5 no.2
    • /
    • pp.127-146
    • /
    • 2020
  • Building Information Modeling (BIM) is increasingly used throughout the facility's life cycle for various applications, such as design, construction, facility management, and maintenance. For existing buildings, the geometry of as-built BIM is often constructed using dense, three dimensional (3D) point clouds data obtained with laser scanners. Traditionally, as-built BIM systems do not contain the material and textural information of the buildings' elements. This paper presents a semi-automatic method for generation of material and texture rich as-built BIM. The method captures and integrates material and textural information of building elements into as-built BIM using thermal infrared sensing (TIS). The proposed method uses TIS to capture thermal images of the interior walls of an existing building. These images are then processed to extract the interior walls using a segmentation algorithm. The digital numbers in the resulted images are then transformed into radiance values that represent the emitted thermal infrared radiation. Machine learning techniques are then applied to build a correlation between the radiance values and the material type in each image. The radiance values were used to extract textural information from the images. The extracted textural and material information are then robustly integrated into the as-built BIM providing the data needed for the assessment of building conditions in general including energy efficiency, among others.

Digital Infrared Thermal Imaging of Crape Myrtle Leaves Infested with Sooty Mold

  • Kim, Jiyeon;Kweon, Si-Gyun;Park, Junhyung;Lee, Harim;Kim, Ki Woo
    • The Plant Pathology Journal
    • /
    • v.32 no.6
    • /
    • pp.563-569
    • /
    • 2016
  • The spatial patterns for temperature distribution on crape myrtle leaves infested with sooty mold were investigated using a digital infrared thermal imaging camera. The mean temperatures of the control and sooty regions were $26.98^{\circ}C$ and $28.44^{\circ}C$, respectively. In the thermal images, the sooty regions appeared as distinct spots, indicating that the temperatures in these areas were higher than those in the control regions on the same leaves. This suggests that the sooty regions became warmer than their control regions on the adaxial leaf surface. Neither epidermal penetration nor cell wall dissolution by the fungus was observed on the adaxial leaf surface. It is likely that the high temperature of black leaves have an increased cooling load. To our knowledge, this is the first report on elevated temperatures in sooty regions, and the results show spatial heterogeneity in temperature distribution across the leaf surface.

Effects of Beraprost Sodium Evaluated by Digital Infrared Thermal Imaging in Diabetic Patients with Peripheral Arterial Disease (당뇨병성 말초혈관병증 환자에게 Beraprost Sodium이 미치는 영향에 대한 적외선 체열검사를 통한 연구)

  • Park, Hyun Woo;Soh, Jae Wan;Park, Seong Hyeon;Jeong, Jae Jung
    • Journal of Korean Foot and Ankle Society
    • /
    • v.22 no.3
    • /
    • pp.105-110
    • /
    • 2018
  • Purpose: This study examined the effects of beraprost sodium on digital infrared thermal images in patients with peripheral arterial disease caused by type 2 diabetes mellitus. Materials and Methods: Twenty-five diabetic patients with peripheral arterial disease were treated with beraprost sodium in a prospective, multicenter, cohort study from February 2013 to December 2014. Beraprost sodium ($40{\mu}g$) was administered orally 3 times daily ($120{\mu}g/day$) for 6 months. The visual analogue scale (VAS) and digital infrared thermal imaging (DITI) were performed to compare the blood flow improvement between before and after dosing. Results: Among the 25 patients included in the evaluation, 22 patients completed the study. A significant increase in body temperature was observed in the front and left side, particularly in the plantar side in DITI compared to that before and after administration. An increase in body temperature was observed at the frontal part from $28.1^{\circ}C{\pm}2.3^{\circ}C$ to $29.1^{\circ}C{\pm}2.1^{\circ}C$ (p=0.021), at the left side from $27.8^{\circ}C{\pm}2.4^{\circ}C$ to $28.6^{\circ}C{\pm}1.9^{\circ}C$ (p=0.028), at the plantar part at $24.0^{\circ}C{\pm}1.5^{\circ}C$, and at the plantar part at $27.1^{\circ}C{\pm}2.4^{\circ}C$ (p<0.01). The VAS decreased significantly from $5.4{\pm}1.3$ to $2.7{\pm}2.0$ after 6 months of treatment (p<0.01). Conclusion: Beraprost sodium is a safe and easy-to use oral medication for diabetes peripheral arterial disease. It can be expected to increase the blood flow and decrease the lower extremity pain statistically after being taken for 6 months.

Object Detection based on Mask R-CNN from Infrared Camera (적외선 카메라 영상에서의 마스크 R-CNN기반 발열객체검출)

  • Song, Hyun Chul;Knag, Min-Sik;Kimg, Tae-Eun
    • Journal of Digital Contents Society
    • /
    • v.19 no.6
    • /
    • pp.1213-1218
    • /
    • 2018
  • Recently introduced Mask R - CNN presents a conceptually simple, flexible, general framework for instance segmentation of objects. In this paper, we propose an algorithm for efficiently searching objects of images, while creating a segmentation mask of heat generation part for an instance which is a heating element in a heat sensed image acquired from a thermal infrared camera. This method called a mask R - CNN is an algorithm that extends Faster R - CNN by adding a branch for predicting an object mask in parallel with an existing branch for recognition of a bounding box. The mask R - CNN is added to the high - speed R - CNN which training is easy and fast to execute. Also, it is easy to generalize the mask R - CNN to other tasks. In this research, we propose an infrared image detection algorithm based on R - CNN and detect heating elements which can not be distinguished by RGB images. As a result of the experiment, a heat-generating object which can not be discriminated from Mask R-CNN was detected normally.

Observation of the Cold-air Drainage and Thermal Belt Formation in a Small Mountainous Watershed by Using an Infrared Imaging Radiometer (적외선 영상 복사계를 이용한 산간집수역의 찬공기 배수와 온난대 형성 관측)

  • Yun, Jin-I.
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.13 no.2
    • /
    • pp.79-86
    • /
    • 2011
  • Cold-air drainage and pooling occur in most mountain valleys at night. Local climates with cold-air pooling could affect phenology and distribution of crop plants. A high resolution infrared imaging radiometer was used to visualize the cold-air drainage and thermal belt formation over a small mountainous watershed (ca. $10{\times}5{\times}1$ km for the maximum length${\times}$width${\times}$depth). Thermal images on $640{\times}480$ pixels were scanned across the Akyang valley (south of Mt. Jiri National Park) by the radiometer installed at a local peak ('Hyongjebong', 1,117 m a.s.l.) at dawn of 17 May 2011, when the synoptic condition was favorable for the surface cooling and cold-air drainage. Major findings are: (1) Cold-air drainage and accumulation was clearly identified by the lowest brightness temperature mainly at the valley bottom. (2) So-called 'thermal belt' with higher brightness temperature was found partway up the valley sidewalls and showed up to $5^{\circ}C$ departure from the valley bottom temperature. (3) Digital thermography showed feasibility for validation of the high definition geospatial temperature models currently in use for the plot-specific agrometeorological service.